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ABSTRACT 

Perú is located in a highly seismic zone, making it vulnerable to infrastructure damage caused by earthquakes. For this reason, 
an early evaluation after a severe earthquake is important for mitigating impacts, particularly for decision-makers. Pavements 
often sustain significant damage among the most affected infrastructure, leading to crack formation. These cracks not only 
disrupt transportation networks but also pose safety hazards and hinder economic activities. Identifying pavement cracks is an 
important step in post-earthquake assessment; however, traditional inspection methods are typically slow, error-prone, labor-
intensive, and often inaccessible in high-risk zones, limiting their effectiveness. This study applies deep learning techniques for 
automated pavement crack detection in post-earthquake scenarios using aerial images to address this issue. A DeepLabv3+ 
convolutional neural network was trained on 5600 labeled pavement crack images. The model achieved an Intersection over 
Union (IoU) of 65% on the validation set. It was subsequently applied to post-earthquake imagery from the 2007 Pisco earthquake 
in Peru. When evaluated against a manually segmented reference, the model yielded an IoU of 47.2% and an F1-score of 64.3%. 
These results indicate strong generalization capabilities despite the domain shift and resolution gap between training and testing 
data. The proposed method demonstrates the potential of deep learning models for rapid and scalable assessment of post-
earthquake pavement damage, reducing reliance on manual inspections and supporting timely decision-making in disaster 
response contexts. 
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RESUMEN 
 
Perú se encuentra en una zona altamente sísmica, lo que lo hace vulnerable a daños en la infraestructura provocados por 
terremotos, por ello una evaluación rápida después de un sismo de gran magnitud es importante para mitigar sus impactos, 
especialmente para los tomadores de decisiones. Entre las infraestructuras más afectadas, encontramos al pavimento, los 
cuales suelen sufrir daños significativos, generando la formación de grietas, estas no solo interrumpen la red de transporte, 
sino que también representan un riesgo para la seguridad y afectan las actividades económicas. 
La detección de grietas en pavimentos es un paso clave en este proceso; sin embargo, los métodos de inspección tradicionales 
suelen ser lentos, propensos a errores, demandan un alto esfuerzo manual y, en muchas ocasiones, son inaccesibles en zonas 
de alto riesgo, lo que limita su efectividad. Para abordar este problema, en este estudio se aplican técnicas de aprendizaje 
profundo para la detección automatizada de grietas en pavimentos a partir de imágenes aéreas en escenarios post-sismo. 
Se entrenó una red neuronal convolucional DeepLabV3+ con aproximadamente 5,600 imágenes etiquetadas de grietas en 
pavimentos. El modelo alcanzó un IoU de 65 % en el conjunto de validación, aplicándose a imágenes post-sismo del terremoto 
de Pisco de 2007. Al compararse con una segmentación manual de referencia, el modelo obtuvo un IoU de 47.2 % y un F1-score 
de 64.3 %. Estos resultados reflejan una buena capacidad de generalización pese a las diferencias entre los datos de 
entrenamiento y prueba. El método propuesto demuestra el potencial del aprendizaje profundo para realizar evaluaciones 
rápidas y escalables de daños en pavimentos post-terremoto, reduciendo la dependencia de inspecciones manuales y 
facilitando una toma de decisiones oportuna en contextos de emergencia. 
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1. INTRODUCTION 
 
Earthquakes are among the most destructive natural 
disasters, frequently causing extensive damage to 
critical infrastructure [1]. Although considerable 
research has focused on evaluating structural 
damage to buildings, damage to transportation 
infrastructure, especially road networks, has received 
comparatively less attention [2]. However, 
preserving road connectivity is essential in post-
earthquake scenarios, as disrupted road networks 
hinder rescue, relief, and evacuation operations by 
limiting emergency vehicle mobility and increasing 
response times [3]. Additionally, compromised roads 
pose risks to public safety, intensify impacts on 
human lives and social stability, and impede long-
term economic recovery and the restoration of other 
critical infrastructure systems [4]. Currently, road 
assessment methods rely primarily on visual 
inspections, which are costly, labor-intensive, and 
prone to unreliable results [5]. Furthermore, repairs 
to damaged road networks often take months or 
even years, resulting in prolonged disruptions during 
reconstruction [3], [6].  
 
In recent years, remote sensing technologies have 
emerged as effective tools for assessing post-
earthquake infrastructure damage [7]. Techniques 
such as aerial photogrammetry and unmanned aerial 
vehicles (UAVs) are increasingly employed to collect 
data rapidly over extensive areas [8]. These methods 
provide safer, faster, and more comprehensive 
evaluations than manual inspections [9]. However, 
interpreting these large datasets demands significant 
human effort and specialized expertise, which can 
cause delays and inconsistencies in damage 
assessment [10]. Recent studies have integrated 
artificial intelligence and machine learning techniques 
with remote sensing data to address these 
challenges. Convolutional neural networks (CNNs), in 
particular, have demonstrated considerable potential 
for automating the detection of infrastructure 
damage, significantly reducing both analysis time and 
required human resources [11].  Although several 
automated techniques exist for detecting general 
road damage, pavement failures induced by 
earthquakes, typically manifested as cracks, exhibit 
unique characteristics [12]. Existing methods often 
exhibit limitations identifying this damage type [13].  
 
To overcome the limitations such as the dependency 
on manual interpretation and the inefficiencies 
associated with processing large volumes of 
geospatial data, this study introduces a dataset of 
flexible pavement distress in Peru, created from high-
resolution aerial imagery. and implements a 
DeepLabv3+ architecture, selected for its high 
accuracy and fast inference [14], both critical for real-

time applications. In addition, a tailored post-
processing strategy is introduced to refine the 
delineation of pavement damage. To evaluate the 
effectiveness of the proposed approach in a real-
world post-seismic scenario, the trained model is 
applied to four historical aerial imagery acquired after 
the 2007 Pisco earthquake. This methodology aims to 
improve the precision and robustness of automated 
road damage assessments, thereby supporting faster 
and more informed after the 2007 Pion-making in 
post-earthquake response efforts. 
 

2. BACKGROUND 
 
On August 15, 2007, an earthquake struck off the 
coast of Peru, causing severe damage throughout the 
region. Its epicenter was located offshore near Pisco, 
in the Ica region, registering a magnitude of 7.9 on 
the Richter scale. The event resulted in 519 fatalities, 
approximately 1,366 injuries, and the collapse of 
more than 58,000 buildings [15]. 
 
This research explores the potential of deep learning 
techniques as an alternative for automated post-
earthquake pavement damage detection. The 
validation of the proposed approach is carried out 
using four historical aerial images captured over the 
district of San Clemente, an area of strategic 
importance as it encompasses the former 
Panamericana Sur highway, which connects Lima and 
Pisco [16], as illustrated in Fig. 1. This connection is 
particularly relevant given that Pisco was the region 
most severely affected by the earthquake. Moreover, 
San Clemente shares significant geographic and 
socio-economic ties with Pisco and plays a key role in 
the area’s recovery efforts [16]. 
 

 
Fig. 1. (a) Study area: District of San Clemente, where the former 

Panamericana Sur passes through. The four colored markers 
indicate the locations of the historical aerial photographs used for 

analysis validation. (b) Location of the Ica Region within Peru, 
highlighting the province of Pisco and its connection to the capital 
city, Lima. (c) Reference map of Peru showing the position of Ica 

in the national context. 
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3. METHODOLOGY 
 
This section presents the methodology used for the 
automated detection of post-earthquake pavement 
cracks using deep learning on aerial images. The 
workflow includes data acquisition, preprocessing, 
model training, and post-processing adaptations to 
optimize crack segmentation. Each stage is detailed 
in the following subsections, and the overall 
workflow is illustrated in Fig. 2. 
 

 
Fig. 2. Methodological pipeline for deep learning-based post-

earthquake pavement crack detection. 

3.1 Data acquisition 
 
Acquiring post-earthquake pavement imagery poses 
significant challenges due to the rarity of such events 
and the historically limited availability of advanced 
technologies for systematic data collection. As an 
alternative, this study introduces a curated dataset of 
pavements exhibiting typical surface distress under 
non-disaster conditions. The dataset comprises four 
orthomosaics (O1, O2, O3, and O4) each 
corresponding to flexible pavement sections, with 
distinct ground sample distances (GSD) (see TABLE I), 
providing variability in image resolution. O1 
corresponds to the San Martín de Porres district, 
specifically along Eduardo de Habich Avenue, while 
O2, O3, and O4 were captured in different sections of 
Maestro Peruano Avenue in the district of Comas. All 
images were acquired using a DJI Mavic 2 Pro drone 
and were processed and labeled by the authors as 
part of the research workflow developed in this 
article.  
 

TABLE I 
Orthomosaic data summary 

ID 
GSD 
(cm/pixel) 

Images 

Obtained Cracked Non-Cracked 

O1 0.52 4,039 636 204 

O2 1.39 1,536 73 23 

O3 1.40 930 47 15 

O4 1.41 1,501 64 23 

TOTAL 8,006 820 300 

 
 

3.2 Data pre-processing 
 
The pre-processing stage encompassed a series of 
transformations to structure the dataset for model 
training. The first step involved dividing high-
resolution orthomosaics into 448×448 pixels patches, 
see Fig. 3, a standard image processing practice. This 
approach preserves crack details while maintaining a 
computationally efficient input size for deep learning 
models [17], [18]. Furthermore, this method simplifies 
manual annotation by reducing the scale of images 
requiring segmentation. 
 

 
Fig. 3. The cropping process applied to the original orthomosaics, 

where each image was divided into 448×448 patches. Fig. 3(a) 
presents an example of an extracted image patch, while Fig. 3(b) 
shows its corresponding binary mask generated through manual 

crack segmentation. 

Subsequently, manual segmentation was performed 
to generate labeled data, providing ground truth 
masks for supervised learning. Based on the image 
distribution summarized in TABLE I, a total of 1,120 
cropped images, with their corresponding binary 
masks, were obtained for initial training. To improve 
model generalization, data augmentation techniques 
were applied, including rotation, brightness 
adjustments, and contrast modifications, increasing 
the dataset size by a factor of five. As a result, a total 
of 5,600 training samples were generated. Finally, 
image normalization was conducted to standardize 
pixel intensity distributions, ensuring consistency 
across the dataset before training. 
 
It is important to note that, although only 300 fully 
non-cracked images were selected, a considerable 
number of non-cracked pixels are present within the 
820 cracked images, as surface cracking typically 
affects only a localized portion of each crop. As a 
result, the model was effectively exposed to a wide 
distribution of non-cracked pixels under varying 
lighting conditions, GSD values, and pavement 
appearances. The inclusion of the 300 entirely non-
cracked images was therefore not intended to 
introduce a new class representation, but rather to 
reinforce the variability of non-cracked areas and 
improve class balance at the image level. This 
strategy contributed to a more robust training 
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process while maintaining computational efficiency 
and minimizing redundancy. 
 
3.3 Model training and adaptations 
 
Model training was conducted using the DeepLabV3+ 
architecture, a deep learning architecture widely 
employed for semantic segmentation tasks due to its 
accuracy and inference speed [19]. The dataset was 
divided into 80% for training, 10% for validation, and 
10% for testing to ensure robust model evaluation. 
The model was trained for a maximum of 200 epochs, 
with early stopping implemented to prevent 
overfitting. Training was performed with a batch size 
of 8, using the Adam optimizer with a learning rate of 
0.001. The training was performed on a high-
performance workstation equipped with an NVIDIA 
RTX A4000 GPU (16 GB VRAM) and 128 GB of RAM, 
ensuring efficient processing of the deep learning 
model. The Intersection over Union (IoU) metric was 
employed to assess segmentation performance. It is 
a standard evaluation metric for semantic 
segmentation tasks, defined as the ratio between the 
area of overlap and the area of union between the 
predicted segmentation and the ground truth. 
Mathematically, it is expressed as equation (1) 
 

𝐼𝑜𝑈 =  
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ∩ 𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ∪ 𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ
             (1) 

 
 This metric ranges from 0 to 1, where a value closer 
to 1 indicates higher segmentation accuracy. It 
provides a robust measure of how well the predicted 
mask aligns with the actual object boundaries in the 
image. 
 
As a result of this training, Fig. 4 presents the IoU 
curves for both the training and validation datasets. 
The model exhibits a steady increase in performance 
during the initial epochs, showing a rapid 
improvement in IoU. Around epoch 20, the training 
IoU stabilized above 0.78, while the validation IoU 
plateaued around 0.65. 
 

 
Fig. 4. Training and validation IoU curves for the DeepLabV3+ 

model. 

This behavior indicates that the model effectively 
learns to crack patterns from the training set, though 
a small performance gap between training and 
validation suggests slight overfitting. However, the 
validation performance remains stable, implying that 
generalization is maintained within an acceptable 
range. 
 

 
Fig. 5. Inference results of DeepLabV3+ trained model on test set 

images. 

The inference analysis on the test set confirms the 
effectiveness of the DeepLabV3+ model in 
segmenting pavement cracks from aerial images. Fig. 
5 illustrates the results, where Fig. 5(a) shows the 
original pavement images, Fig. 5(b) corresponds to 
the manually segmented ground truth, and Fig. 5(c) 
presents the crack masks predicted by the model.  
 
These results demonstrate that the model accurately 
detects most cracks, maintaining continuity and 
characteristics. However, some limitations are 
evident, including minor segmentation 
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discontinuities and false positives in visually complex 
pavement regions, particularly near road markings 
and structural joints. Despite these challenges, the 
predicted masks exhibit a high consistency with 
ground truth annotations, indicating the model’s 
strong generalization ability for pavement imagery 
under normal conditions. 
 
3.4 Post Processing & Adaptations 
 
The trained model was applied in the aerial images 
obtained by the earthquake damage from 2007 Pisco 
Earthquake on the road former “Panamericana Sur” 
highway, representing data not included in the 
training dataset. These images, like presented in Fig. 
6, were taken on August 17, 2007, at 2:00 PM 
approximately using an aircraft and has a resolution 
of 2870×2896 pixels with an approximate GSD of 4 
cm/pixel. 
 

 
Fig. 6. Image from former Panamericana Sur, Post-earthquake 

The trained model was applied to the aerial images 
using a sliding window approach with 448×448 
patches and a 50% overlap, given that the aerial 
imagery had significantly larger dimensions than the 
training images. Additionally, a probability threshold 
of 0.5 was applied to generate a binary crack mask 
capable of distinguishing between cracked and non-
cracked pavement areas. 
 
However, this approach exhibited limitations when 
applied to post-earthquake images, requiring further 
adaptations to optimize segmentation performance. 
This was primarily due to the higher capture altitude, 
which resulted in patches covering both sides of the 
road, as shown in Fig. 5, with pavement occupying 
only one-third of each patch. At the same time, the 
remaining area consisted mainly of soil and debris. 
Since the model was trained on images where the 

background primarily consisted of pavement, as the 
original patches had a limited field of view, as shown 
in Fig. 3(a), this discrepancy negatively affected 
segmentation performance. To address this issue, 
cropping the pavement region, as shown in Fig. 7 (a). 
 
Although cropping improved segmentation, the 
results remained inconsistent, as shown in Fig. 7(b), 
which illustrates the inference using a 50% overlap 
and a 0.5 threshold on the cropped image. This 
inconsistency occurred because, compared to the 
test images, the post-earthquake image exhibited 
fewer false positives in mask probabilities, meaning 
that even regions with a low predicted probability of 
being a crack were actual cracks; this allowed for a 
lower probability threshold of 0.025, which, while 
maintaining the 50% overlap, improved crack visibility, 
as seen in Fig. 7(c). However, even with this 
adjustment, segmentation results were not fully 
optimized. The overlap was increased to 70% to 
improve consistency, leading to a significant 
enhancement in segmentation performance, as 
illustrated in Fig. 7 (d). 
 
Despite these improvements, segmentation still 
faced challenges due to ground sample distance 
(GSD) discrepancies. The post-earthquake image had 
a GSD of approximately 4 cm/pixel, whereas the 
highest GSD in the training set was 1.4 cm/pixel, 
leading to a loss of detail in crack patterns. To 
compensate for this difference, bicubic rescaling 
technique was applied to artificially increase pixel 
density while maintaining spatial consistency. A 
factor of 2.5 would have resulted in an artificial GSD 
of approximately 1.5 cm/pixel, making it more 
comparable to the training data. However, after 
evaluating segmentation performance across 
different rescaled images, a scaling factor 1.5 was 
selected as it provided the most accurate and reliable 
results, as shown in Fig. 7(e). The segmentation 
results of the rescaled image, using a 0.025 threshold 
and 70% overlap, are presented in Fig. 7(f). 
 
Although the inference process initially employed a 
70% overlap, segmentation accuracy decreased near 
the road edges due to border patches lacking 
overlapping predictions, limiting the model’s ability 
to infer crack patterns accurately. A 300-pixel 
reflection padding was applied to mitigate this, 
artificially extending the pavement beyond its 
original boundaries, as seen in Fig. 7(g). This allowed 
edge pixels to interact with a more representative 
context, improving segmentation along the road 
edges, as illustrated in Fig. 7(h). Finally, the padded 
borders were cropped after segmentation, restoring 
the image to its original dimensions and producing 
the final crack segmentation mask, as shown in Fig. 
7(i). 
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Fig. 7. Post-Processing Techniques Applied to Crack Segmentation 

in Post-Earthquake Images 

4. RESULTS AND DISCUSSION 
 
The DeepLabV3+ trained model was applied on four 
aerial imageries of earthquake-damaged pavement 
to assess its performance under post-disaster 
conditions. Fig. 8 presents the segmentation results, 
where cracks detected by the model are highlighted 
in green. 

 
Fig. 8. Post-Earthquake Pavement Crack Detection Results. 

The model effectively identifies major crack patterns 
along the damaged roadway, particularly in areas 
where pavement displacement is evident. A 
quantitative pixel-wise evaluation against a manually 
segmented reference resulted in an Intersection over 
Union (IoU) of 47.2%, a precision of 49.0%, and a recall 
of 93.1%, resulting in an F1-score of 64.3%. These 
results confirm that the model successfully detects 
most crack regions, but tends to over-segment them 
by generating masks that are visibly thicker than the 
actual cracks, see Fig. 9 This behavior increases the 

number of false positives and reduces spatial 
accuracy, but ensures a high sensitivity level, an 
advantageous trait in rapid post-disaster screening 
scenarios. 
 
The model effectively identifies major crack patterns 
along the damaged roadway, particularly in areas 
where pavement displacement is evident. However, 
some limitations were observed, including the 
incomplete detection of finer cracks and the 
misclassification of terrain irregularities as pavement 
damage. These errors arise from the high GSD of the 
post-earthquake imagery and variations in lighting 
conditions, both of which impact the segmentation 
accuracy. Another limitation of the proposed 
approach is that it is not fully automated, as it 
requires manual cropping of road areas from the full 
aerial images prior to inference.  
 

 
Fig. 9. Visual comparison between manual and automated 

pavement crack segmentation 

CONCLUSIONS 
 
The proposed model, based on the DeepLabV3+ 
architecture, demonstrated the ability to identify 
major crack patterns despite the challenges posed by 
aerial imagery, such as high ground sampling distance 
(GSD), variable lighting conditions, and surface 
irregularities. To address these limitations, a tailored 
post-processing strategy was implemented, 
incorporating bicubic rescaling, adaptive 
thresholding, and a 70% overlap in inference tiles, 
which improved the reliability of the segmentation 
outputs. 
A quantitative pixel-wise evaluation against manually 
segmented references yielded an Intersection over 
Union (IoU) of 47.2%, a precision of 49.0%, and a recall 
of 93.1%, resulting in an F1-score of 64.3%. These 
results confirm that the model successfully detects 
most crack regions, although it tends to over-
segment, as reflected in the lower precision. 
 
Overall, the findings highlight the potential of deep 
learning, when combined with appropriate pre- and 
post-processing techniques, to support rapid and 
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scalable assessments of pavement damage following 
seismic events. This automated approach reduces 
dependence on manual inspections and facilitates 
timely decision-making in emergency response. 
 
For future research, additional architectures will be 
explored, and earthquake damage data from roads in 
different countries will be collected to assess the 
generalization and robustness of the trained model 
across diverse geographic regions and pavement 
conditions. Additionally, a study will be conducted on 
the influence of GSD on inference results, focusing on 
its impact on segmentation accuracy and model 
performance in varying post-earthquake 
environments. 
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