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ABSTRACT

Peru is located in a highly seismic zone, making it vulnerable to infrastructure damage caused by earthquakes. For this reason,
an early evaluation after a severe earthquake is important for mitigating impacts, particularly for decision-makers. Pavements
often sustain significant damage among the most affected infrastructure, leading to crack formation. These cracks not only
disrupt transportation networks but also pose safety hazards and hinder economic activities. Identifying pavement cracks is an
important step in post-earthquake assessment; however, traditional inspection methods are typically slow, error-prone, labor-
intensive, and often inaccessible in high-risk zones, limiting their effectiveness. This study applies deep learning techniques for
automated pavement crack detection in post-earthquake scenarios using aerial images to address this issue. A DeeplLabv3+
convolutional neural network was trained on 5600 labeled pavement crack images. The model achieved an Intersection over
Union (loU) of 65% on the validation set. It was subsequently applied to post-earthquake imagery from the 2007 Pisco earthquake
in Peru. When evaluated against a manually segmented reference, the model yielded an loU of 47.2% and an F1-score of 64.3%.
These results indicate strong generalization capabilities despite the domain shift and resolution gap between training and testing
data. The proposed method demonstrates the potential of deep learning models for rapid and scalable assessment of post-
earthquake pavement damage, reducing reliance on manual inspections and supporting timely decision-making in disaster
response contexts.
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RESUMEN

Pert se encuentra en una zona altamente sismica, lo que lo hace vulnerable a dafios en la infraestructura provocados por
terremotos, por ello una evaluacién rdpida después de un sismo de gran magnitud es importante para mitigar sus impactos,
especialmente para los tomadores de decisiones. Entre las infraestructuras mas afectadas, encontramos al pavimento, los
cuales suelen sufrir dafios significativos, generando la formacidn de grietas, estas no solo interrumpen la red de transporte,
sino que también representan un riesgo para la seguridad y afectan las actividades econémicas.

La deteccidn de grietas en pavimentos es un paso clave en este proceso; sin embargo, los métodos de inspeccidn tradicionales
suelen ser lentos, propensos a errores, demandan un alto esfuerzo manual y, en muchas ocasiones, son inaccesibles en zonas
de alto riesgo, lo que limita su efectividad. Para abordar este problema, en este estudio se aplican técnicas de aprendizaje
profundo para la deteccién automatizada de grietas en pavimentos a partir de imagenes aéreas en escenarios post-sismo.

Se entrend una red neuronal convolucional DeepLabV3+ con aproximadamente 5,600 imagenes etiquetadas de grietas en
pavimentos. El modelo alcanzé un loU de 65 % en el conjunto de validacién, aplicindose a imagenes post-sismo del terremoto
de Pisco de 2007. Al compararse con una segmentacién manual de referencia, el modelo obtuvo un loU de 47.2 % y un Fi-score
de 64.3 %. Estos resultados reflejan una buena capacidad de generalizacidn pese a las diferencias entre los datos de
entrenamiento y prueba. El método propuesto demuestra el potencial del aprendizaje profundo para realizar evaluaciones
rapidas y escalables de dafios en pavimentos post-terremoto, reduciendo la dependencia de inspecciones manuales y
facilitando una toma de decisiones oportuna en contextos de emergencia.
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1. INTRODUCTION

Earthquakes are among the most destructive natural
disasters, frequently causing extensive damage to
critical infrastructure [1]. Although considerable
research has focused on evaluating structural
damage to buildings, damage to transportation
infrastructure, especially road networks, has received
comparatively less attention [2]. However,
preserving road connectivity is essential in post-
earthquake scenarios, as disrupted road networks
hinder rescue, relief, and evacuation operations by
limiting emergency vehicle mobility and increasing
response times [3]. Additionally, compromised roads
pose risks to public safety, intensify impacts on
human lives and social stability, and impede long-
term economic recovery and the restoration of other
critical infrastructure systems [4]. Currently, road
assessment methods rely primarily on visual
inspections, which are costly, labor-intensive, and
prone to unreliable results [5]. Furthermore, repairs
to damaged road networks often take months or
even years, resulting in prolonged disruptions during
reconstruction 3], [6].

In recent years, remote sensing technologies have
emerged as effective tools for assessing post-
earthquake infrastructure damage [7]. Techniques
such as aerial photogrammetry and unmanned aerial
vehicles (UAVs) are increasingly employed to collect
data rapidly over extensive areas [8]. These methods
provide safer, faster, and more comprehensive
evaluations than manual inspections [9]. However,
interpreting these large datasets demands significant
human effort and specialized expertise, which can
cause delays and inconsistencies in damage
assessment [10]. Recent studies have integrated
artificial intelligence and machine learning techniques
with remote sensing data to address these
challenges. Convolutional neural networks (CNNs), in
particular, have demonstrated considerable potential
for automating the detection of infrastructure
damage, significantly reducing both analysis time and
required human resources [11]. Although several
automated techniques exist for detecting general
road damage, pavement failures induced by
earthquakes, typically manifested as cracks, exhibit
unique characteristics [12]. Existing methods often
exhibit limitations identifying this damage type [13].

To overcome the limitations such as the dependency
on manual interpretation and the inefficiencies
associated with processing large volumes of
geospatial data, this study introduces a dataset of
flexible pavement distress in Peru, created from high-
resolution aerial imagery. and implements a
Deeplabv3+ architecture, selected for its high
accuracy and fast inference [14], both critical for real-
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time applications. In addition, a tailored post-
processing strategy is introduced to refine the
delineation of pavement damage. To evaluate the
effectiveness of the proposed approach in a real-
world post-seismic scenario, the trained model is
applied to four historical aerial imagery acquired after
the 2007 Pisco earthquake. This methodology aims to
improve the precision and robustness of automated
road damage assessments, thereby supporting faster
and more informed after the 2007 Pion-making in
post-earthquake response efforts.

2. BACKGROUND

On August 15, 2007, an earthquake struck off the
coast of Peru, causing severe damage throughout the
region. Its epicenter was located offshore near Pisco,
in the Ica region, registering a magnitude of 7.9 on
the Richter scale. The event resulted in 519 fatalities,
approximately 1,366 injuries, and the collapse of
more than 58,000 buildings [15].

This research explores the potential of deep learning
techniques as an alternative for automated post-
earthquake pavement damage detection. The
validation of the proposed approach is carried out
using four historical aerial images captured over the
district of San Clemente, an area of strategic
importance as it encompasses the former
Panamericana Sur highway, which connects Lima and
Pisco [16], as illustrated in Fig. 1. This connection is
particularly relevant given that Pisco was the region
most severely affected by the earthquake. Moreover,
San Clemente shares significant geographic and
socio-economic ties with Pisco and plays a key role in
the area’s recovery efforts [16].
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Fig. 1. (@) Study area: District of San Clemente, where the former
Panamericana Sur passes through. The four colored markers
indicate the locations of the historical aerial photographs used for
analysis validation. (b) Location of the Ica Region within Peru,
highlighting the province of Pisco and its connection to the capital
city, Lima. (c) Reference map of Peru showing the position of Ica
in the national context.
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3. METHODOLOGY

This section presents the methodology used for the
automated detection of post-earthquake pavement
cracks using deep learning on aerial images. The
workflow includes data acquisition, preprocessing,
model training, and post-processing adaptations to
optimize crack segmentation. Each stage is detailed
in the following subsections, and the overall
workflow is illustrated in Fig. 2.
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Fig. 2. Methodological pipeline for deep learning-based post-
earthquake pavement crack detection.

3.1 Data acquisition

Acquiring post-earthquake pavement imagery poses
significant challenges due to the rarity of such events
and the historically limited availability of advanced
technologies for systematic data collection. As an
alternative, this study introduces a curated dataset of
pavements exhibiting typical surface distress under
non-disaster conditions. The dataset comprises four
orthomosaics (01, 02, 03, and 04) each
corresponding to flexible pavement sections, with
distinct ground sample distances (GSD) (see TABLE 1),
providing variability in image resolution. O1
corresponds to the San Martin de Porres district,
specifically along Eduardo de Habich Avenue, while
02, 03, and 04 were captured in different sections of
Maestro Peruano Avenue in the district of Comas. All
images were acquired using a DJI Mavic 2 Pro drone
and were processed and labeled by the authors as
part of the research workflow developed in this
article.

TABLE |
Orthomosaic data summary
o GSD Images
(cm/pixel) Obtained Cracked Non-Cracked

O1 0.52 4,039 636 204

02 139 1,536 73 23

03 1.40 930 47 15

04 1.41 1,501 64 23

TOTAL 8,006 820 300
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3.2 Data pre-processing

The pre-processing stage encompassed a series of
transformations to structure the dataset for model
training. The first step involved dividing high-
resolution orthomosaics into 448x448 pixels patches,
see Fig. 3, a standard image processing practice. This
approach preserves crack details while maintaining a
computationally efficient input size for deep learning
models [17], [18]. Furthermore, this method simplifies
manual annotation by reducing the scale of images
requiring segmentation.

(b)

Fig. 3. The cropping process applied to the original orthomosaics,
where each image was divided into 448x448 patches. Fig. 3(a)
presents an example of an extracted image patch, while Fig. 3(b)
shows its corresponding binary mask generated through manual
crack segmentation.

Subsequently, manual segmentation was performed
to generate labeled data, providing ground truth
masks for supervised learning. Based on the image
distribution summarized in TABLE |, a total of 1,120
cropped images, with their corresponding binary
masks, were obtained for initial training. To improve
model generalization, data augmentation techniques
were applied, including rotation, brightness
adjustments, and contrast modifications, increasing
the dataset size by a factor of five. As a result, a total
of 5,600 training samples were generated. Finally,
image normalization was conducted to standardize
pixel intensity distributions, ensuring consistency
across the dataset before training.

It is important to note that, although only 300 fully
non-cracked images were selected, a considerable
number of non-cracked pixels are present within the
820 cracked images, as surface cracking typically
affects only a localized portion of each crop. As a
result, the model was effectively exposed to a wide
distribution of non-cracked pixels under varying
lighting conditions, GSD values, and pavement
appearances. The inclusion of the 300 entirely non-
cracked images was therefore not intended to
introduce a new class representation, but rather to
reinforce the variability of non-cracked areas and
improve class balance at the image level. This
strategy contributed to a more robust training
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process while maintaining computational efficiency
and minimizing redundancy.

3.3 Model training and adaptations

Model training was conducted using the DeepLabV3+
architecture, a deep learning architecture widely
employed for semantic segmentation tasks due to its
accuracy and inference speed [19]. The dataset was
divided into 80% for training, 10% for validation, and
10% for testing to ensure robust model evaluation.
The model was trained for a maximum of 200 epochs,
with early stopping implemented to prevent
overfitting. Training was performed with a batch size
of 8, using the Adam optimizer with a learning rate of
0.001. The training was performed on a high-
performance workstation equipped with an NVIDIA
RTX A4000 GPU (16 GB VRAM) and 128 GB of RAM,
ensuring efficient processing of the deep learning
model. The Intersection over Union (loU) metric was
employed to assess segmentation performance. It is
a standard evaluation metric for semantic
segmentation tasks, defined as the ratio between the
area of overlap and the area of union between the
predicted segmentation and the ground truth.
Mathematically, it is expressed as equation (1)

ToU = Prediction N Ground Truth 1
oV = Prediction U Ground Truth (1)

This metric ranges from 0 to 1, where a value closer
to 1 indicates higher segmentation accuracy. It
provides a robust measure of how well the predicted
mask aligns with the actual object boundaries in the
image.

As a result of this training, Fig. 4 presents the loU
curves for both the training and validation datasets.
The model exhibits a steady increase in performance
during the initial epochs, showing a rapid
improvement in loU. Around epoch 20, the training
loU stabilized above 0.78, while the validation loU
plateaued around 0.65.
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Fig. 4. Training and validation loU curves for the DeepLabV3+

model.

This behavior indicates that the model effectively
learns to crack patterns from the training set, though
a small performance gap between training and
validation suggests slight overfitting. However, the
validation performance remains stable, implying that
generalization is maintained within an acceptable
range.

o

(a) (b) (9
Fig. 5. Inference results of DeepLabV3+ trained model on test set
images.

The inference analysis on the test set confirms the
effectiveness of the DeeplLabV3+ model in
segmenting pavement cracks from aerial images. Fig.
5 illustrates the results, where Fig. 5(a) shows the
original pavement images, Fig. 5(b) corresponds to
the manually segmented ground truth, and Fig. 5(c)
presents the crack masks predicted by the model.

These results demonstrate that the model accurately
detects most cracks, maintaining continuity and
characteristics. However, some limitations are
evident, including minor segmentation
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discontinuities and false positives in visually complex
pavement regions, particularly near road markings
and structural joints. Despite these challenges, the
predicted masks exhibit a high consistency with
ground truth annotations, indicating the model’s
strong generalization ability for pavement imagery
under normal conditions.

3.4 Post Processing & Adaptations

The trained model was applied in the aerial images
obtained by the earthquake damage from 2007 Pisco
Earthquake on the road former “Panamericana Sur”
highway, representing data not included in the
training dataset. These images, like presented in Fig.
6, were taken on August 17, 2007, at 2:00 PM
approximately using an aircraft and has a resolution
of 2870x2896 pixels with an approximate GSD of 4
cm/pixel.

Fig. 6. Image from former Panamericana Sur, Post-earthquake

The trained model was applied to the aerial images
using a sliding window approach with 448x448
patches and a 50% overlap, given that the aerial
imagery had significantly larger dimensions than the
training images. Additionally, a probability threshold
of 0.5 was applied to generate a binary crack mask
capable of distinguishing between cracked and non-
cracked pavement areas.

However, this approach exhibited limitations when
applied to post-earthquake images, requiring further
adaptations to optimize segmentation performance.
This was primarily due to the higher capture altitude,
which resulted in patches covering both sides of the
road, as shown in Fig. 5, with pavement occupying
only one-third of each patch. At the same time, the
remaining area consisted mainly of soil and debris.
Since the model was trained on images where the
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background primarily consisted of pavement, as the
original patches had a limited field of view, as shown
in Fig. 3(a), this discrepancy negatively affected
segmentation performance. To address this issue,
cropping the pavement region, as shown in Fig. 7 (a).

Although cropping improved segmentation, the
results remained inconsistent, as shown in Fig. 7(b),
which illustrates the inference using a 50% overlap
and a 0.5 threshold on the cropped image. This
inconsistency occurred because, compared to the
test images, the post-earthquake image exhibited
fewer false positives in mask probabilities, meaning
that even regions with a low predicted probability of
being a crack were actual cracks; this allowed for a
lower probability threshold of 0.025, which, while
maintaining the 50% overlap, improved crack visibility,
as seen in Fig. 7(c). However, even with this
adjustment, segmentation results were not fully
optimized. The overlap was increased to 70% to
improve consistency, leading to a significant
enhancement in segmentation performance, as
illustrated in Fig. 7 (d).

Despite these improvements, segmentation still
faced challenges due to ground sample distance
(GSD) discrepancies. The post-earthquake image had
a GSD of approximately 4 cm/pixel, whereas the
highest GSD in the training set was 1.4 cm/pixel,
leading to a loss of detail in crack patterns. To
compensate for this difference, bicubic rescaling
technique was applied to artificially increase pixel
density while maintaining spatial consistency. A
factor of 2.5 would have resulted in an artificial GSD
of approximately 1.5 cm/pixel, making it more
comparable to the training data. However, after
evaluating segmentation performance across
different rescaled images, a scaling factor 1.5 was
selected as it provided the most accurate and reliable
results, as shown in Fig. 7(e). The segmentation
results of the rescaled image, using a 0.025 threshold
and 70% overlap, are presented in Fig. 7(f).

Although the inference process initially employed a
70% overlap, segmentation accuracy decreased near
the road edges due to border patches lacking
overlapping predictions, limiting the model’s ability
to infer crack patterns accurately. A 300-pixel
reflection padding was applied to mitigate this,
artificially extending the pavement beyond its
original boundaries, as seen in Fig. 7(g). This allowed
edge pixels to interact with a more representative
context, improving segmentation along the road
edges, as illustrated in Fig. 7(h). Finally, the padded
borders were cropped after segmentation, restoring
the image to its original dimensions and producing
the final crack segmentation mask, as shown in Fig.
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4. RESULTS AND DISCUSSION

The DeeplLabV3+ trained model was applied on four
aerial imageries of earthquake-damaged pavement
to assess its performance under post-disaster
conditions. Fig. 8 presents the segmentation results,
where cracks detected by the model are highlighted
in green.

Y

eV i S &
e Pavement Crack Detection Results.

Fig. 8. Post-Earthquak

The model effectively identifies major crack patterns
along the damaged roadway, particularly in areas
where pavement displacement is evident. A
quantitative pixel-wise evaluation against a manually
segmented reference resulted in an Intersection over
Union (loU) of 47.2%, a precision of 49.0%, and a recall
of 93.1%, resulting in an Fi-score of 64.3%. These
results confirm that the model successfully detects
most crack regions, but tends to over-segment them
by generating masks that are visibly thicker than the
actual cracks, see Fig. 9 This behavior increases the
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number of false positives and reduces spatial
accuracy, but ensures a high sensitivity level, an
advantageous trait in rapid post-disaster screening
scenarios.

The model effectively identifies major crack patterns
along the damaged roadway, particularly in areas
where pavement displacement is evident. However,
some limitations were observed, including the
incomplete detection of finer cracks and the
misclassification of terrain irregularities as pavement
damage. These errors arise from the high GSD of the
post-earthquake imagery and variations in lighting
conditions, both of which impact the segmentation
accuracy. Another limitation of the proposed
approach is that it is not fully automated, as it
requires manual cropping of road areas from the full
aerial images prior to inference.

%

]

Segmentation
Manual segmentation |
Automated segmentation

Fig. 9. Visual comparison between manual and automated
pavement crack segmentation

CONCLUSIONS

The proposed model, based on the DeeplLabV3+
architecture, demonstrated the ability to identify
major crack patterns despite the challenges posed by
aerial imagery, such as high ground sampling distance
(GSD), variable lighting conditions, and surface
irregularities. To address these limitations, a tailored
post-processing  strategy was  implemented,
incorporating bicubic rescaling, adaptive
thresholding, and a 70% overlap in inference tiles,
which improved the reliability of the segmentation
outputs.

A quantitative pixel-wise evaluation against manually
segmented references yielded an Intersection over
Union (loU) of 47.2%, a precision of 49.0%, and a recall
of 93.1%, resulting in an Fi-score of 64.3%. These
results confirm that the model successfully detects
most crack regions, although it tends to over-
segment, as reflected in the lower precision.

Overall, the findings highlight the potential of deep
learning, when combined with appropriate pre- and
post-processing techniques, to support rapid and
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scalable assessments of pavement damage following
seismic events. This automated approach reduces
dependence on manual inspections and facilitates
timely decision-making in emergency response.

For future research, additional architectures will be
explored, and earthquake damage data from roads in
different countries will be collected to assess the
generalization and robustness of the trained model
across diverse geographic regions and pavement
conditions. Additionally, a study will be conducted on
the influence of GSD on inference results, focusing on
its impact on segmentation accuracy and model
performance in varying post-earthquake
environments.
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