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Presentacion

La revista de la Facultad de Ciencias de la UNI -REVCIUNI-
comenz6 a publicarse en junio de 1995, con el doble propdsito de,
por un lado presentar los trabajos de investigacion realizados por
los miembros de nuestra Facultad y de otro lado divulgar temas
interesantes de Ciencias Naturales a la comunidad universitaria
en general. El primer objetivo es considerado particularmente
importante debido a la poca costumbre que tenemos los docentes
de la UNI de publicar nuestros trabajos.

En estos seis afios de vida de nuestra revista solamente se han
podido publicar seis nimeros, siendo el ultimo de octubre de 1999.
A pesar de este modesto resultado no perdemos la esperanza que
en un futuro cercano cumplamos la meta de publicar —por lo
menos— dos numeros por ario.
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Uso del software IRAF para
el analisis de una imagen
digital astronomica:
Cumulo estelar abierto M7

Nobar Baella Pajuelo

RESUMEN

La intencion de este trabajo es ser una pequeria guia introductoria
para los que estén interesados en procesar imagenes
astronomicas usando el software IRAF.

Se muestran las dificultades encontradas y las
posibles mejoras a realizarse.

Todo el trabajo se realizo usando el equipo que posee el
Grupo Astronomia de nuestra facultad, sin el cual
no hubiera sido posible esta tarea.

*Grupo Astronomia, Facultad de Ciencias, UNI.
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Qué pasos se siguieron para hacer esta imagen?

1. El equipo utilizado

- Telescopio Celestron de 8 pulgadas de apertura.
- Camara CCD Electrim 1000 EDC.
- Reductor/Corrector 6.3 Celestron.

Este ultimo accesorio fue necesario para ampliar el campo de observacion del
telescopio y poder asi registrar la mayor cantidad de estrellas perteneciente al cimulo.

2. Un buen cielo libre de la contaminacion luminosa de las grandes ciudades,
el lugar fue el Observatorio de Huayao a 3300 msnm.

JPor qué se escogio M7?

- Ante todo porque en el momento de efectuar la imagen, éste estaba cerca
de nuestro cenit y esta circunstancia favorecia nuestras observaciones.

- La oportunidad de probar la camara CCD con un cimulo estelar abierto
con estrellas que estarian en el limite de sensibilidad del telescopio + CCD.

1. El paso siguiente es escoger el tiempo de integracion (tiempo de exposicion
de la CCD al objeto). Este tiempo se estimo para probar la sensibilidad de la camara
en: 4000 ms. (Es decir cuatro segundos).

2. Se hicieron entonces las siguientes tomas:

-01 imagen del cumulo M7. (Telescopio abierto)
-05 imagenes BIAS. (Telescopio cerrado)
-05 iméagenes DARK. (Telescopio cerrado)

En total once imagenes, todas con tiempo de integracion igual a 4000 ms.
con excepcion de las imagenes BIAS con el tiempo de exposicion minimo: 1ms.

Esta parte es lo que se llama trabajo de campo. Lo siguiente es el
procesamiento de los datos mediante el IRAF (Image Reduction Access Facility).

Una nota importante

Como se puede notar, no se realizé en ningin momento tomas de Flat Field,
esto como se vera mas adelante tendra sus consecuencias.
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:Como se usé el IRAF para procesar las imagenes?

1. Como el IRAF reconoce sélo imagenes en formato FITS, es necesario
convertir los archivos imagenes a este formato. Esto se realiz6 mediante el programa
incluido con la camara CCD. Se debe mencionar que esta conversion implica cierta
pérdida de informacién en la imagen original. Esto se puede eliminar trabajando con
camaras CCD que graben en forma directa sus imagenes en fomato FITS.

2. El siguiente paso es obtener una sola imagen BIAS y una sola imagen
DARK. Para esto hacemos un promedio de cada grupo de cinco imagenes.

Es decir, sumamos las cinco imagenes BIAS y dividimos entre cinco,
obteniendo una imagen final que seria nuestra imagen BIAS promedio: Bias_prom.

En forma similar sumamos las cinco imagenes DARK vy el resultado lo dividimos

entre cinco, obteniendo una imagen final que seria nuestra imagen DARK promedio:
Dark_prom.

Para esto se usé principalmente la tarea IRAF:
IMSUM

Uno de los parametros que necesariamente debe estar activado para esta tarea
es el de:

OPTION = AVERAGE
Una de las formas de activar este parametro es escribiendo:
EPAR IMSUM

Y con el cursor modificar el parametro: Option al valor: Average, y a
continuacién presionar las teclas: CTRL + D para salvar el cambio de parametro.

3. Se construye asi la imagen final. A la imagen del cumulo debemos restarle
la imagen BIAS promedio y también la imagen DARK promedio. Es decir:

Imagen final = Imagen original - Bias_prom - Dark_prom.
Esto se puede hacer mediante la tarea IRAF:

IMARITH
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Si la imagen original se llama M7, las instrucciones IRAF a seguir serian:

IMARITH M7 - Bias _ prom m7_cor_bias.
IMARITH m7_cor_bias - Dark_prom m7_cor_dark.

Asi siguiendo los pasos mencionados el nombre del archivo (imagen) final
ya procesado seria el de: m7_cor_dark (Ver Fig. 1)

m?7_cor_dark.imh-

Fig. 1. Imagen final procesada del ciumulo M7,

Se puede observar que la extension del nombre del archivo usada por el IRAF
es: IMH, en realidad se esta haciendo referencia a la cabecera (header) de 1a imagen
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Evaluacion de la calidad de la imagen

Como una primera aproximacion para evaluar la calidad de nuestra imagen
usando el IRAF, se uso la tarea: IMEXAMINE (la cual incluye varias tareas).

En especial se usaron dos tareas (dentro del imexamine):

a) CONTOUR PLOT (Tecla: “e”) Grafico de contornos.
b) RADIAL PROFILE PLOT (Tecla: “r”) Perfil radial.

A) GRAFICO DE CONTORNOS

En una buena imagen se espera que el griafico de contornos sean
circunferencias concéntricas alrededor de la estrella. Lo que hace la tarea es interpolar
los valores de los pixels de la imagen que posean el mismo valor, todo esto en torno
a la estrella. En realidad se hace alrededor del centroide de la estrella.

Como ejemplo se utilizd la estrella etiquetada como numero doce: N12 (ver
Tabla 1 y también Figura 3) cuyo centroide tiene las coordenadas: (716.81, 89.83)
obteniéndose como resultado la Fig. 2.
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NOAO/IRAF V2.11EXPORT nobarin@astronomia Wed 16:48:17 20-Dec-2000
m?7_cor_dark.imh: Contoured from -21.4. to 167.6., interval = 9.

Fig. 2. Grdfica de contornos para la estrella N12.
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m?7_cor_dark.imh-

Fig. 3. Imagen procesada de M7 con estrellas analizadas numeradas.

Como se puede observar, no se obtienen circunferencias concéntricas, al menos
las primeras dos parecen serlo (desde el interior), pero las que siguen ya no lo son.
El resultado es una imagen alargada de la estrella.

Las posibles causas

Imagenes fuera de foco.

Como el tiempo de exposicion fue de 4000 ms (cuatro segundos), el equipo
fue muy sensible a incrementar cualquier tipo de defecto instrumental: entre
ellos el error periodico de seguimiento que tienen todos los motores a pasos
que se usan en los telescopios, y a una posible desalineacién, necesaria
para un buen seguimiento. :

Viento lateral que desestabiliza el telescopio.
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e Otro factor a tomar en cuenta es el hecho de que hubo una conversion
de software (mediante el programa de la cdmara CCD) para cambiar el
formato original de la imagen a un formato (imagen FIT) que pueda
manejar el IRAF.

En todo caso el resultado final fue el de una mala calidad en nuestra imagen.

Number | Catalog Cat ID RA(2000) | DEC(2000) | V.MAG. [SPECTRAL.TYPE
1 hd HD 162586 [17 53 21.74 |-34 43 27.1 6.20 B9
2 hd HD 162587 [17 53 22.23 |-34 53 27.1 5.68 KO0
3 hd HD 162588 [17 53 22.63 |-35 00 27.0
4 hd HD 162630 {17 53 33.59 |-34 41 25.4 8,70 A0
S hd HD 162631 |17 53 34.20 |-34 52 25.4 8.70 A0
6 hd HD 162656 {17 53 39.78 [-34 44 24.5| 10.70 A2
7 hd HD 162678 |17 53 45.82 |-34 46 23.6 6.38 AQ
8 hd HD 162679 [17 53 45.96 | -34 47 23.6 7,28 A
9 hd HD 162680 |17 53 46.15 {-34 50 23.6 7,88 AQ
10 hd HD 162724 |17 53 57.77 |-34 44 21.9 6,08 B9
11 hd HD 162725 [17 53 58.02 | -34 49 21.9 6,45 AQ
12 hd HD 162780 [17 54 15.74 [-34 43 19.3 6,88 A0
13 hd HD 162781 [17 54 16.01 [-34 49 19.2 7,63 AO
14 hd HD 162804 |17 54 22.20 |-34 52 18.4
15 hd HD 162818 [17 54 27.56 |-34 40 17.5
16 hd HD 162858 [17 54 40.18 |-34 51 15.7
17 hd HD 162889 |17 54 51.81 |-34 45 14.0
18 hd HD 162890 [17 54 52.15 {-34 50 14.0
Tabla 1. Estrellas analizadas de M7 obtenidas del Catalogo Henry Draper.

A modo de comparacion se muestra el grafico de contornos de una estrella
usando un telescopio y equipos diferentes (Fig. 4). El telescopio fue un refractor
Takahashi de 15 cm de apertura y la cdmara CCD una SBIG de 16 bits. (Colaboracion
de Julio C. Tello 1.G.P)

Como se puede observar la Fig. 4 supera en calidad a la Fig. 2.

B) PERFIL RADIAL

La idea de un perfil radial es que si nos ponemos en el centroide de la estrella
tenemos una lectura maxima, y a medida que nos alejamos de €1 y hacemos lecturas




REVISTA DE LA FACULTAD DE CIENCIAS - UNI

435

430

Line

425

420

ll]l"‘1llllrlillll
lllj_lllllllllllllll

Column

NOAO/IRAF V2.11EXPORT nobarin@astronomia Wed 15:56:28 20-Dec-2000 omega.fit:
Contoured from 163. to 48163., interval = 2000.
OBJECT

Fig. 4. Grafico de contornos.

para cada radio alrededor de la estrella, estas lecturas irdn disminuyendo en forma
aproximada a una gaussiana. Lo que hace esta tarea es graficar los valores de los
pixels en funcién del radio y ajustar la mejor gaussiana a estas medidas.

La curva de ajuste se muestra en lineas entrecortadas (Ver Fig. 5), y los datos
medidos se muestran con cruces.

El eje X representa la distancia radial medida en pixels a partir del centroide
de la estrella.

El eje Y nos muestra el valor de las lecturas para cada radio alrededor del
centroide de la estrella.
Notese que para “r” igual a cero hay un méaximo, y a medida que “r” crece
la intensidad baja rapidamente.
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Se dice que una imagen tiene un buen perfil radial (por lo tanto es de buena
calidad) cuando los valores medidos (cruces) coinciden con la gaussiana trazada.
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NOAO/IRAF V2.11EXPORT nobarin@astronomia Wed 19:05:58 20-Dec-2000
m?7_cor_dark.imh: Radial profile at 716.81 89.83

Fig. 5. Perfil radial para la estrella analizada en M7.

En nuestro caso para la estrella N? 12: N12 se obtuvo la Fig. 5.

Como puede observarse los valores medidos (cruces) se alejan mucho de la
gaussiana trazada, incluso se observa un aumento considerable en las lecturas para
r = 3 pixels.

Esto nos indica nuevamente que la imagen no es de buena calidad.

Como posibles causas de esto, mencionariamos lo que se dijo en el punto
anterior: tiempo de exposicion muy alto como para hacer sensibles errores de
seguimiento y alineacion, alteracion de la imagen original al convertirla al formato
IRAF: imagen FIT.

A modo de comparacién se muestra también la figura del perfil radial de una
estrella usando un telescopio y equipos diferentes (Fig. 6).
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En este caso se puede apreciar que los valores medidos se acercan mas a la

gaussiana trazada. Por lo tanto esta wltima figura (Fig. 6) nos indica que la imagen
es de buena calidad.
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NOAO/IRAF V2.11EXPORT nobarin@astronomia Wed 20:05:21 20-Dec-2000 omega.fit:
Radial profile at 595.87 429.10
OBJECT

Fig. 6. Perfil radial de otra estrella con otro equipo instrumental.

En conclusion

Los resultados del grafico de contornos y el de perfil radial nos dicen que
nuestras imagenes no son de buena calidad.

Se sugiere
o Extremar los cuidados al hacer la focalizacién de una imagen.
o Experimentar con una cimara CCD que ofreciera sus imégenes en formato

FIT, para no tener que manipularla por software y asi descartar esta
interferencia como causa de la baja calidad de las imédgenes.

10
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e Otra sugerencia es la de disefiar una montura mas robusta para el telescopio
Celestron y de esta manera eliminar las vibraciones que influirian en la
calidad de la imagen.

El ancho de la curva medido a la mitad de la intensidad maxima (“b”) nos

da también un parametro para evaluar la calidad de nuestra imagen, en los dos casos
los valores aproximados son:

Fig. § ...... b =3 pixels.
Fig. 6 ...... b = 1,5 pixels.

Number | Catalog Cat ID V.MAG. | SPECTRAL.TYPE | FLUJO (IRAF)
1 hd HD 162586 6,20 B9 11972
2 hd HD 162587 5,68 KO0 18470
4 hd HD 162630 8,70 A0 4600
5 hd HD 162631 8,70 A0 5963
6 hd HD 162656 10,70 A2 2958
7 hd HD 162678 6,38 A0 9748
8 hd HD 162679 7,28 A 6277
9 hd HD 162680 7,88 AQ 4434
10 hd HD 162724 6,08 B9 11897
11 hd HD 162725 6,45 A0 9618
12 hd HD 162780 6,88 A0 6736
13 hd HD 162781 7,63 A0 4990

Tabla 2. Estrellas mas brillantes en M7.

Para el calculo del flujo (Columna: Flujo (IRAF)) se usé el comando
IMEXAMINE del Iraf sobre la imagen final del cumulo.

Se escogieron de la tabla 1 las doce estrellas mas brillantes, las cuales se
muestran en la tabla 2.

11
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Las mas brillantes segiin catilogo HD y menciones CCD + IRAF

oo

e F T
o V-Mag Nro. Flujo
2 5,68 2 18470
10 6,08 1 11972

6,20 10 11897
{ 6,38 7 9748
1l 6,45 11 9618
12 6,88 12 6736
8 7,28 8 6277
13 7,63 5 5963
9 7,88 13 4990
4 8,70 4 4600
b) 8,70 9 4434
6 10,70 6 2958

Tabla 3. Comparacion de flujos y magnitudes para estrellas de M7.

bu ia tabla 3 estamos comparando cudl estrella es mas brillante segin el
catalogo HD (Henry Draper) y segtin las mediciones tomadas.

Se observa lo siguiente

1. En las dos listas la mas brillante es N2 y la menos brillante N6.

2. Existe un problema con N1 y N10. En el catalogo N10 es la mas brillante,
pero segun las mediciones N1 es la mas brillante. ;Cuadl es la causa?

e Un anélisis de los perfiles radiales de las estrellas en la tabla 3 mostr6
que: N2, N10, N1, N7 y N11 han saturado el nimero de cuentas que
registra la CCD.

Por lo tanto no se usaran éstas para extraer conclusiones.

3. No coinciden los datos (orden de brillo) para las estrellas N13, N9, N4,
NS5 con las mediciones realizadas. Se puede observar segun el cuadro, de mayor a
menor brillo:
Catadlogo HD : N13 > N9 > N4 = N5
CCD + IRAF: N5 > NI3 > N4 > N9

12



REVISTA DE LA FACULTAD DE CIENCIAS - UNI

JPor qué esta diferencia?

o Elno haber efectuado un FLAT FIELD es una posible causa. Una vez mas

se nota la importancia de efectuar este tipo de correccidn para descartar
su influencia en las medidas.

e (Se podria culpar esto al no empleo de un filtro? Todo indica que no, ya
que las cuatro estrellas son del mismo tipo espectral: AQ, por lo tanto se
comportan de la misma manera para el sensor CCD.

e (Y la sensibilidad al rojo del CCD?: Estas cuatro estrellas (N13, N9, N4,
N35) son todas del tipo espectral A0 (no son estrellas rojizas) lo cual
descartaria la influencia de la CCD (sensibilidad al rojo) en la aparicion
de estas diferencias.

o Es probable que de las cuatro estrellas mencionadas algunas de ellas sean
estrellas variables, lo cual explicaria las diferencias en el orden de brillo
en el momento de ser medidas. En todo caso falta investigar en los
catalogos de estrellas variables para descartar totalmente este punto.

Conclusiones

1. La estrella N6 (la menos brillante de las seleccionadas = +10,70 mag.
visible) no es la mas débil en el campo de estrellas registradas (ver cuadro
M?7), existen otras menos brillantes. Esto indica por lo tanto que la cimara
CCD puede registrar estrellas (segun este trabajo) de hasta magnitud +10
(magnitud en el espectro visible) con el equipo usado: Celestron SC 8
pulgadas + reductor corrector Celestron 6.3.

2. La ausencia del flat field provocé que no se realizaran conclusiones

definitivas. De aqui que se recomiende la necesidad obligatoria de este
tipo de correccidn.

3. Fue muy importante tener acceso a bases de datos con registros (en varios
catdlogos) de las estrellas que se estdn estudiando ya que esto permite
comparar y extraer conclusiones de manera mas consistente. Se tuvo acceso
a esta informacion mediante el uso de paginas autorizadas en Internet.

4. Estas conclusiones no son definitivas ya que para esto se tendrian que usar
filtros que seleccionan un determinado ancho de banda y realizar asi un estudio
final. Recordemos que todas las mediciones realizadas en este informe fueron
realizadas sin filtros. Por lo tanto se recomienda efectuar (para estudiar las
posibilidades de esta camara) nuevas medidas con los filtros adecuados.

13
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Términos usados en este trabajo

1.

2.

Sensor CCD

Son las iniciales de Charge Coupled Device (Dispositivo de carga acoplada).
El cual consiste en un arreglo de sensores que convierten la luz incidente en
descarga de electrones, el cual se convierte en una sefial digital que sera
convertida en un archivo de imagen.

Correccion de BIAS

Las imagenes BIAS se hacen con el telescopio cerrado y con el tiempo de

exposicion al minimo para registrar asi los errores en la transferencia de datos
propia de la camara.

Correccion de DARK

Las imagenes DARK se hacen también con el telescopio cerrado y con el
tiempo de exposicién igual al de la toma que se desea corregir.

Correccion de FLAT FIELD

Esta imagen se hace tomando una fuente de luz uniforme, para asi registrar
la diferente sensibilidad que tiene la superficie del sensor CCD. En realidad

el chip no es completamente uniforme en su sensibilidad, existen zonas que
son mas sensibles que otras.

Centroide una estrella

Son las coordenadas del “centro de masa” de la imagen de una estrella. El
calculo es en forma similar al centro de masa sélo que en vez de la “masa”

se escribe el valor del pixel. La “masa total” seria la suma de todos los valores
de pixels calculados.

Agradecimientos

Cabe mencionar la ayuda desinteresada de Antonio Pereyra, especialmente

en la obtencion de los catalogos HD (Henry Draper) pertenecientes al cimulo M7,
Y por supuesto a nuestro asesor Armando Bernui por confiar en este pequerio
trabajo.
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La forma del universo

Armando Bernui Leo*

RESUMEN

La observacion de un cielo nocturno donde la materia luminosa parece estar

uniformemente distribuida en la boveda celeste sugirio durante mucho tiempo

que las galaxias se encontraban homogéneamente esparcidas en el universo.

Recientemente, con mejores tecnologias para escudrinar el cielo, observamos
que las galaxias tienden a juntarse para formar aglomerados y super-
aglomerados de galaxias y estos a su vez parecen establecer inmensas

estructuras (tipo fibra y tipo pared) que dejan grandes vacios en el espacio

(figura 1). Es decir, a gran escala la materia parece distribuirse de manera

no homogénea.

Aunque tal distribucion de materia aun no fue comprendida, el papel
desempenado por las propiedades globales (como por ejemplo la forma) del
universo en el panorama observado debe haber sido importante. A inicios del
siglo XXI, ;qué sabemos sobre estas propiedades del universo?

Los modelos cosmolégicos: ;Universo finito o universo infinito?

LAS COSMOLOGIAS ANTIGUAS

Los antiguos griegos fueron los primeros en usar la observacion (obviamente
limitada por la inexistencia del telescopio) y la légica del sentido comiin en su manera

"bernui@uni.edu.pe Facultad de Ciencias, Universidad Nacional de Ingenieria, Lima-Peru.
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Center for Astrophysics Survey

Slice of the 2dF survey, centered on the south galactic pole.
Arrows indicate the depth of two previous galaxy surveys.

Figura 1.

de describir el universo, si bien sin desprenderse del caracter mitolégico de los
cuerpos celestes. En su modelo cosmoldgico los griegos intentaron explicar como
funcionaba el universo, y porque lo hacia de la manera observada y no de otra.
También hipotizaron sobre su contenido y mds interesante aun, reflexionaron sobre
cuestiones como la forma y el tamafio del universo.

El universo griego se dividia en 7 esferas, la tierra ocupaba el centro, la luna,
el sol y los cinco planetas conocidos las esferas intermedias, y las estrellas- eternas
e inmoviles-la ultima. De este modo fue facil para ellos pensar que el tamafio del
universo era infinito: llegaba hasta la “esfera' de las estrellas fijas”, la cual
representaba la frontera del universo (es decir era la frontera del espacio 3-
dimensional en donde estamos localizados nosotros y todo lo que observamos).

Nétese que para los pensadores antiguos los conceptos de frontera y centro estaban
intimamente relacionados.

T Una esfera es una superficie 2-dimensional que denotamos por S? cuyo ‘volumen’ 2-dimensional (es
decir su 4rea) es igual a 4rR?, siendo R el valor obteniendo al dividir su perimetro méximo entre 2x. Una
S? es de tamafio finito (i.e. 4rea finita) y tiene la propiedad de no tener borde; el espacio 3-dimensional

SS, conocido como la tri-esfera, posee estas mismas propiedades: es de volumen finito y carece de
borde o frontera.

16
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Desde la antigua Grecia hasta los escolasticos de la edad media la existencia
de una frontera del universo fue aceptada como evidente (justamente porque la tierra
se ubicaba en el centro del universo). La idea de una frontera era también bienvenida
por la jerarquia de la Iglesia porque ayudaba a entender la delimitacion entre la
tierra -lugar donde ocurren las imperfecciones, los hechos mundanos- y los cielos
-i.e. el paraiso, lugar de la perfeccion-. Nétese la confusion existente en el idioma
espaiiol por el hecho de traducir las palabras inglesas sky y heaven con la misma
palabra: cielo que deriva del latin celestium.

Sin embargo las cosmogonias evolucionaron y se lleg6 a la conclusion de

que era inaceptable suponer que el universo tuviese frontera, independientemente
de si era finito o infinito. Veamos porque:

o Si el tamafio del universo fuese infinito, es claro que él no tendria frontera,
pues si tuviera seria de tamaiio finito.

e En cambio si el universo tuviese tamafio finito existe un argumento
simple e interesante para concluir que €l no tiene frontera: como sabemos
una frontera representa la separacion entre dos regiones (la interior
y la exterior), luego si el universo tuviese unz frontera la existencia de
ésta implica que hay algo detras de ella, asi el universo estaria formado
por lo que hay en el interior mas lo que hay en el exterior por lo tanto
ya no seria la frontera del universo porque no estaria abarcando todo el
contenido (i.e. interior mas exterior) del universo.

LAS COSMOLOGIAS MEDIOEVALES

Los modelos cosmoldgicos del medioevo se basaron en el Principio
Copernicano, segun el cual “la Tierra no ocupa ningun lugar privilegiado en el
universo”, y donde la distribucién de estrellas es “homogénea, isotropica® y en eterno
equilibrio”. Esto implicaba que el universo estaba constituido por el espacio
Euclidiano &> (el cual es un espacio tri-dimensional con geometria plana, sin frontera,
de extension infinita y -globalmente- homogéneo e isotropico) y por estrellas
esparcidas en dicho espacio de modo tal que mantengan al universo eternamente
en el equilibrio observado. La diferencia entre los modelos propuestos estaba en
la cantidad y la forma como se distribuian los cuerpos celestes.

2 Atribuimos la propiedad de homogeneidad cuando observamos lo mismo desde cualquier punto al cual
nos trasladamos; por ejemplo un ndufrago en alta mar diria con razén que el mar es homogéneo porque
él/ siempre ve lo mismo, a pesar de estarse moviendo continuamente -respecto a tierra firme-
transportado por los vientos y por corrientes submarinas; isotropia es la propiedad que resulta de
observar lo mismo independiente de la direccién en la cual miramos.
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~ Asi, en 1691 surgi6 el modelo cosmoldgico de Isaac Newton (1642-1727).
Para Newton, el universo era un espacio tri-dimensional de extension ilimitada con las
estrellas en reposo y en perfecto equilibrio por interaccién gravitacional. El espacio
apropiado era X° por que careciendo de frontera y siendo ilimitado entonces “el centro
estaba en cualquier parte y desde todo punto se observa lo mismo en todas direcciones”.
Newton sabia que adoptar un modelo de universo con un centro (de masa) tenia el
serio problema de su estabilidad ya que por atraccion gravitacional, antes o después,
el sistema debia de colapsar al centro de masa. Por esto su modelo consistia de
un sistema de cuerpos celestres homogéneamente distribuidos en una region finita
del espacio mas un numero limitado de estrellas “convenientemente” distribuidas
alrededor del primer sistema de modo que se equilibren las fuerzas gravitacionales
entre ambos sistemas y se mantenga la situacion de reposo observada en el cosmos
desde tiempos inmemoriales. De esta manera él evitaba asumir una distribucion
uniforme de masas, es decir una distribucién con densidad no-nula, pues en tal caso
-dada la extension ilimitada de X>- la cantidad de masa en el universo es infinita.

Para Newton el espacio y el tiempo eran entidades absolutas cuya existencia
era independiente de los objetos materiales ubicados en él. Ademas de los cuerpos
celestes visibles representados por las estrellas similares a nuestro Sol, ¢l imaginaba
que el universo estaba lleno de ‘aether’, una sustancia constituida de particulas
extremadamente livianas y veloces, sistema que le servia como sistema de referencia
absoluto (i.e. sistema de referencia inercial).

El modelo cosmolégico de G.W. Leibnitz (1646-1716) suponia al universo
como un espacio Euclidiano donde las estrellas se encontraban estatica y
uniformemente distribuidas por todo el espacio. Leibnitz asumia un espacio de
extension infinita por que creia que solo tal espacio carece de frontera y por que
de esta manera -pensaba él- una distribucién uniforme de masa estd en equilibrio
y consigue permanecer eternamente en reposo’.

El modelo cosmolégico de Newton no funciona por que una cantidad de masa
que rodee a un volumen esférico finito de materia no afectara a las particulas en

la superficie del volumen, las cuales seran atraidas al centro de masa resultando en
un modelo inestable*.

El siguiente razonamiento (paraddjico) vino a complicarle la existencia a los
modelos cosmologicos como el de Leibnitz con una distribucion uniforme de estrellas
(i.e. conteniendo una cantidad infinita de masa). Un universo Euclideano de tamaiio

¥ Hoy dla sabemos que ambas premisas son falsas: (i) existen los espacios multiplemente conexos que
son de volumen finito y carecen de frontera, (ii) una distribucién uniforme de masa en un espacio de
extension infinita tiene masa infinita, luego es inestable.

4 El Teorema de Birkhoff no era conocido por Newton: “Si tomamos un cierto volumen finito del espacio
conteniendo materia, entonces la aceleracion de una particula de prueba localizada en la superficie
que encierra el volumen depende solamente de la masa interior a la superficie”.
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infinito, eterno y con una distribucién uniforme de estrellas (es decir, un nimero
constante de estrellas por unidad de volumen) contiene entonces un mimero infinito
de ellas. Aun cuando la luminosidad de cada una de ellas fuese bien pequeiia, el hecho
de haber tantas estrellas contribuiria para iluminar suficientemente el cielo nocturno para
que aparezca tan claro como un dia soleado. Y a pesar de esto el cielo nocturno se
ve oscuro. Esta contradictoria situacion parece haber sido observada primero por Kepler
(1610), luego por Halley (1720) y J.P.L. de Cheseaux (1744), pero fue Olbers quien
la populariz6 en 1823 (por esto conocida como la ‘Paradoja de Olbers’).

Calculemos la luminosidad de una corteza esférica de radio r y espesor dr
asumiendo que vivimos en un universo Euclideano (es decir de tamafio infinito) y
eterno, homogéneamente lleno de estrellas puntuales todas con la misma luminosidad
en promedio. Si r es la distancia de la Tierra a la corteza y dado que el volumen
de la corteza crece como 72 y que la luminosidad aparente de una estrella decrece
como 1/ entonces cada corteza nos enviara la misma cantidad de luz. Pero como
el universo es de tamaiio infinito entonces hay un niimero infinito de cortezas, asi
la potencia integrada recibida sobre la tierra seria infinita. En realidad lo que el
calculo realmente indica es que en cualquier direccion en la que miremos acabariamos
viendo la superficie de una estrella, asi el cielo apareceria uniformemente brillante
como, por ejemplo, la superficie del Sol. Y sin embargo sabemos que las noches
son oscuras. Si se considera que las estrellas no son puntuales se encuentra un
resultado aun maés paraddgico [11].

Es util mencionar aqui que todos los modelos cosmolégicos antiguos y
medioevales consideraban el universo como eterno o quasi-eterno (es decir de origen
extremadamente remoto).

LAS COSMOLOGIAS MODERNAS

Una de las ideas modernas mas dificiles de asimilar para el ser humano es la
de que nuestro planeta Tierra no ocupa ningun lugar privilegiado en el universo. En
otras palabras, un observador ubicado en cualquier otro lugar del universo observa
esencialmente la misma distribucion de materia luminosa que nosotros. Este enunciado
-que no puede ser verificado por nuestra imposibilidad de tener informacion obtenida
desde otros puntos del espacio- se conoce como el Principio Cosmologico’.

Esta forma de entender el universo, que puede parecer obvia para el hombre
moderno, demoré maés de 3000 afios en cimentarse. Durante este largo proceso el
Principio Cosmolégico tropezé siempre con dos argumentos de peso:

® Este principio equivale a suponer que el espacio es globalmente homogéneo e isotrépico.
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e primero, ésta es una idea que va en contra de la intuicion pues si lo
observado es que planetas y estrellas giren alrededor nuestro el sentido
comun dice que estamos en el centro (de giro), mientras tanto el principio
afirma que el espacio -siendo homogéneo e isotropico- no posee lugares
especiales como por ejemplo un centro, y

e segundo, porque nos baja del pedestal de privilegio en que nos colocaron
las cosmogonias geocéntricas, fuertemente apoyadas por las diferentes
creencias religiosas.

Luego surgi6 el modelo estacionario, es decir un universo euclideano eterno
e inmutable (en inglés steady state model), el cual originariamente asumia que la
densidad de la materia permanecia constante en el tiempo y que no habia colapso
porque toda la materia se atraia mutuamente, y no habria ningin lugar especial para
tal colapso. Luego que la recesion de las galaxias fuera descubierta por E.K. Hubble
en 1928, este modelo tuvo que ser modificado. Aunque los datos sélo indicaban que
las galaxias observadas se estaban alejando de nosotros, la aplicacién del Principio
Cosmolégico nos dice que en realidad todas las galaxias se alejan continuamente
unas respecto de otras y que mientras mas distante se encuentran mayor €s su
velocidad de alejamiento. Este fendmeno fue atribuido al hecho que es el espacio
el que se esta expandiendo provocando la recesion observada [1].

Asi el modelo steady state no tard6 en adecuarse para incorporar este
fenéomeno; sin embargo como la caracteristica fundamental del modelo es que el
universo siempre aparece como si fuese inmutable, al incluir la hipdtesis de la
expansion del espacio el modelo tuvo que postular la creacion espontanea de materia
de modo de mantener constante en el universo la densidad de materia luminosa.

Después del descubrimiento de Hubble un nuevo modelo cosmoloégico salid
a competir con el “parchado” modelo del estado estacionario®. La interpretacion de
que el universo esta en continua expansion implica, yendo hacia atréas en el tiempo,
que hubo un momento en que toda la materia y la energia contenida en el universo
estuvo concentrada en una region muy pequeiia del espacio. Este inicio del universo
a partir de una region infinitesimal del espacio donde la densidad p >y la

temperatura T — o se conoce como la Gran Explosion (en inglés Big Bang)’.

6 Para adaptarse a las observaciones se tuvo que asumir la creacién espontdnea de materia: Aumenta

el volumen del espacio pero también la masa luego la densidad se mantiene constante y asi el universo
aparece como si nada cambiara: Eterno e inmutable.

Por tener estas caracteristicas fisicas, denominamos a esta regién del espacio-tiempo como una
singularidad.

7
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A finales de la década de 1920 ya se sabia que la solucion correcta a la
‘Paradoja de Olbers’ implicaba (simultdneamente) que el universo:

(a) esta en continua expansion, y
(b) tiene una edad finita.

A pesar de esto el modelo steady state se resistia a desaparecer y en efecto
consiguid sobrevivir hasta 1964 afio en que se descubrié la Radiacion Césmica de
Fondo. Esta radiacion electromagnética de microondas, remanente de los primeros
instantes del universo cuando materia y radiacion se desacoplaron, habia sido
predicha por el modelo del Big Bang, y por afiadidura no tenia cabida en el modelo
del estado estacionario.

De la teoria del Big Bang se deduce que nuestro universo fue de tamaiio finito
en el pasado y -aunque bastante grande actualmente- sigue siendo finito. Asi
empezaron a estudiarse modelos cosmoldgicos donde el universo estuviese bien
representado por un espacio tri-dimensional (brevemente tri-espacio) con las
siguientes caracteristicas basicas: (i) de volumen finito, y (ii) sin frontera.

El pionero en considerar este tipo de tri-espacios en cosmologia fue A. Einstein
en 1917. Es claro que ¢l atin no sabia que el universo era finito, lo que ocurrié fue
que ¢él estaba buscando un tri-espacio con las caracteristicas antes mencionadas para
resolver los problemas creados por los modelos cosmolégicos de Leibnitz y Newton.
El tri-espacio considerado por Einstein fue la tri-esfera S3 que es un espacio
tridimensional de volumen finito, sin frontera y con curvatura (constante) positiva
(por esto se dice que €l esta dotado de geometria esférica).

Cosmologia matematica

Cosmologia es el estudio de nuestro universo como un todo. Comprende su
contenido (radiacién y materia -luminosa y no luminosa-), su forma (plana, esférica,

etc.), su tamario (finito o infinito) y su posible evolucion (;tuvo un inicio o siempre
fue asi?).

Cosmologia matematica se refiere al estudio de las propiedades matematicas
de los espacios que son usados al construir un modelo cosmolégico. La palabra

espacio se refiere en general a los espacios-tiempo M4 de cuatro dimensiones. Usando
el principio de Weyl podemos definir un tiempo cosmico t€ R, de este modo

considerar que el espacio-tipo My tiene la forma: M4 = Rx M3, donde M3 es el tri-
espacio que solemos llamar universo. Asi, usando este principio, nos podemos
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concentrar s6lo en las propiedades de los tri-espacios M3 al estudiar sistemas fisicos
de naturaleza cosmologica.

Los conceptos mas importantes de M3 que debemos tomar en cuenta son [2,3]:

GEOMETRIA VS. TOPOLOGIA

La topologia se refiere a las propiedades que permanecen invariables bajo
deformaciones continuas (e.g. orientabilidad, conectividad, compacidad, separibilidad,
etc.). Sacar puntos o pedazos del espacio en cuestion no es una deformacion continua.

La geometria considera solo aquellas propiedades que cambian bajo
deformaciones continuas (e.g. distancias, angulos, areas, curvatura, etc.). Asi por
ejemplo, las superficies de un huevo y de una pelota de ping-pong son
geométricamente diferentes, sin embargo ambas son topologicamente iguales. Asi
mismo la superficie de una camara (de bicicleta) y la superficie de una taza (con
asa) poseen igual topologia y diferente geometria. En cambio un plano y un cuadrado
con los lados opuestos identificados poseen igual geometria (plana) pero diferente
topologia. Dependiendo de la curvatura (nula, positiva o negativa), existen tres
geometrias de curvatura constante: plana, esférica e hiperbélica.

PROPIEDADES INTRINSECAS VS. PROPIEDADES EXTRINSECAS

Las primeras se refieren a aquellas que pueden determinarse por mediciones
al interno del espacio en estudio, mientras que las ultimas sélo se pueden determinar
desde un espacio de dimensién mayor que la contenga.Veamos por ejemplo el caso
bi-dimensional: una hoja de papel y una hoja de papel enrollada en forma de cilindro
tienen intrinsecamente la misma geometria (la geometria plana), es decir ningin
habitante bi-dimensional notara la diferencia entre uno u otro espacio, diferencia que
sera evidente para un habitante tri-dimensional.

LOCALIDAD VS. GLOBALIDAD

Las propiedades locales son aquellas observadas en entornos o regiones
locales. Las propiedades globales son aquellas que consideran al espacio como un
todo. La topologia determina las propiedades globales del espacio. Consideremos
por ejemplo la superficie de una esfera 52 y un plano R?: localmente son iguales
pues es posible encontrar entornos arbitrariamente pequefios en ambos espacios que
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tengan las mismas propiedades: sin embargo globalmente difieren geométrica y
topolégicamente pues, mientras S? tiene geometria esférica y volumen finito, R?
tiene geometria plana y volumen infinito.

ABIERTO VS. CERRADO

Los espacios abiertos son aquellos que tienen volumen infinito, mientras que
los cerrados (también llamados compactos) tienen volumen finito. Algunos ejemplos

de espacios abiertos tri-dimensionales son: R3 ,R2 x S| ,Rx S 2 ; y como ejemplos de
tri-espacios compactos tenemos: todos los que tienen geometria esférica, los 6

espacios compactos planos de la tabla 1 (el tri-espacio T, es mas conocido como
el tri-toro T?).

HOMOGENEIDAD E ISOTROPIA LOCAL Y GLOBAL

La propiedad de homogeneidad local (global) de un espacio se refiere a su
invariancia bajo translaciones locales (globales), y la isotropia local (global) se refiere
a la invariancia bajo rotaciones infinitesimales (arbitrarias). Estas propiedades
resultan particularmente importantes cuando consideramos la evolucion de sistemas
fisicos (como la propagacion de ondas electromagnéticas) en espacios con estas
propiedades.

Los tri-espacios sin frontera

Las propiedades fopoldgicas (o propiedades globales) del espacio-tiempo no
son generalmente consideradas en el estudio de la evolucion de los fendmenos fisicos
de naturaleza cosmologica porque las leyes fisicas usadas son expresadas en términos
de ecuaciones diferenciales, que por definicion son locales. Las ecuaciones de
evolucion asi obtenidas son resueltas conociendo la geometria local del tri-espacio
y asumiendo (consciente o inconscientemente) una topologia demasiado simple, nos
referimos a la denominada topologia trivial’. Decimos esto porque la geometria del
tri-espacio restringe pero no determina la topologia de él. Esto es lo que ha venido
ocurriendo al aplicar las teorias geométricas de la gravitacién -como por ejemplo

8 Decimos que una variedad tiene topologia trivial cuando se trata de una variedad simplemente conexa.
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la teoria de la relatividad general- a los modelos cosmoldgicos. Para aclarar este
punto, a titulo de ejemplo consideremos los espacios tri-dimensionales M3 vy las tres
posibles geometrias con las que se los puede dotar (globalmente): plana, esférica
e hiperbolica. La topologia trivial correspondiente a cada una de estas geometrias
es la topologia del tri-espacio euclidiano R3, de la tri-esfera S° y del tri-espacio
hiperbdlico H> respectivamente. Hoy en dia sabemos que los espacios M3,
topologicamente diferentes, que pueden dotarse de geometria plana son 18 (6 de ellos

compactos y orientables, ver la tabla 1 y la figura 2), mientras aquellos compatibles
con las geometrias esférica e hiperbdlica son infinitos.

Tipo topolégico  Celda bésica ; Identificaciones de caras
T cubo 3 pares no rotados
T2 cubo 2 pares no rotados, 1 par rotado 90°
T3 cubo 2 pares no rotados, 1 par rotado 180°
T4 cubo caras rotadas segun la fig.1 (ref.[S])
Hi prisma hexagonal caras superior e inferior rotadas a 60°
H2 prisma hexagonal caras superior ¢ inferior rotadas a 120°

Tabla 1. Las unicas seis topologias compactas orientables para tri-espacios con geometria
plana, obtenidas identificando las caras de una celda basica [6].
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De todo esto concluimos que no existen argumentos tedricos ni observa-
cionales para considerar solo las topologias triviales en el estudio de los fendmenos
a escala cosmologica (vease [3] para una bibliografia actualizada sobre este tema).

Perspectivas

La evolucion dindmica del universo primordial, nacido del big bang, debe
haber sido determinada no sélo por las ecuaciones de evolucién (locales por
definicion) sino también por las propiedades globales -geométricas y topologicas-
del espacio Msj.

Las mediciones de la radiacion cosmica de fondo realizadas recientemente
con el satélite COBE, muestran que ella se encuentra distribuida quasi-
isotropicamente (al 99,9999%). ;Significa ésto que nuestro universo es globalmente
isotropico?’. Aceptemos como valido el principio cosmoldgico local segun el cual
nosotros (terricolas) no ocupamos ningun lugar privilegiado en el universo, esto es,
lo que observamos desde aqui es lo mismo que observariamos desde cualquier otro
lugar cercano. Luego sé/o podemos inferir que la radiacion cosmica debe verse quasi-
isotropicamente distribuida localmente (como la observamos desde aqui) alrededor
de cualquier lugar del universo. Esto es, nuestro universo no necesariamente es quasi-
isotropico globalmente [3].

¢Nuestro universo es globalmente homogéneo? El principio cosmoldgico y
la aparente distribucion homogénea de estrellas y galaxias indujo a pensar que
nuestro universo seria homogéneo a gran escala (es decir globalmente). Sin embargo,
se ha observado que galaxias y cumulos de galaxias aparecen distribuidos no
homogéneamente [12], y el problema de la homogeneidad global también continua
abierto.

Imaginemos por un momento que conocemos la geometria del tri-espacio M3,
(qué papel desempeiiaron las propiedades topoldgicas (como compacidad,
conectividad, homogeneidad global e isotropia global) de M3 en la evoluciéon del
sistema?

Preguntas como estas comenzaron a ser estudiadas solo recientemente. La
homogeneidad a gran escala del universo constituye un buen ejemplo de que un

¢ Decimos que el espacio es globalmente isotrdpico cuando vemos lo mismo en cualquier direccién y
desde cualquier punto de observacién.
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fendmeno puede ser explicado no sélo como consecuencia de efectos geometro-
dinamicos (por ende locales) sino también como resultado de las propiedades
topoldgicas del tri-espacio M;. Tradicionalmente dicha homogeneidad fue explicada
dentro del modelo estandar como resultado de un breve y veloz periodo de expansién
del universo conocido como época inflacionaria. Recientemente Ellis [6] propuso
que este hecho podria ser resultado de que nuestro universo sea un universo pequefio,
esto es M3 podria ser (representado por ejemplo por) un cubo con sus caras opuestas
identificadas dos a dos (en este caso la geometria es plana) o sea un tri-toro 7}. Como

resultado de la eleccion de ésta u otra variedad compacta, como variedad M3, sélo

algunas de las galaxias que observamos serian reales y las restantes serian imagenes
de las anteriores debidas a las identificaciones.

Las perspectivas actuales en la comunidad cientifica apuntan a no descartar
a priori la posibilidad que nuestro universo sea un universo pequeiio (luego
compacto), preferentemente con geometria no euclideana.
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Estudios de nanoindentacion

en recubrimientos de TiVN

y TiN sobre acero AISI-316
y HSS

Robinson Figueroa, Fernando Chirinos, Arturo Talledo*

RESUMEN

El presente trabajo trata de aplicar estudios de nanoindentacion sobre
recubrimientos duros tales como TiVN y TiN sobre acero rapido HSS y acero
inoxidable AISI - 316. Las muestras fueron producidas mediante la técnica
de pulveracion catodica “REACTIVE DC MAGNETRON SPUTTERING”. Los

resultados obtenidos indican un incremento en la dureza propiamente del

recubrimiento independientemente del substrato en el cual se deposito. La
carga maxima de impresion dado por el indentador es alrededor de 5,00E +

0,ImN para un espesor del recubrimiento de 4,31um.

Introduccion

Para determinar la dureza Vickers en peliculas, la influencia del substrato en
la medida es un problema. La técnica de nanoindentacion [1], nos permite medir

* Laboratorio de recubrimientos duros.
Facultad de Ciencias - Universidad Nacional de Ingieneria, Lima-Peru
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con mayor precision la dureza de las peliculas y a su vez obtener el médulo elastico
Y. La validez de estd técnica esta sustentado mediante observaciones que fueron
probados experimentalmente con instrumentacion avanzada.

Teoria

El proceso de nanoindentacion para esta técnica es algo parecido a lo que
se realiza en el proceso de indentacién Vickers. Se pueden apreciar dos etapas en
el proceso de esta técnica:

PROCESO DE CARGA

Al indentador se le programa para incrementar su carga P desde una carga
inicial Pjpiciai =0 mN, en el punto de contacto con la superficie inicial, hasta una
carga maxima, Pmax, €sto provoca un desplazamiento h del vértice de la indentaciéon
hasta hmax, ver figura 1-a. Se produce ademas deformaciones fuera del area de
contacto entre indentador - superficie de la muestra, donde el desplazamiento de la
superficie en el perimetro de contacto es denotado por hs. Por otra parte, lo mas
importante a considerar aqui es la distancia de la profundidad, h,, desde el nivel del
perimetro del drea de contacto y el vértice de la indentacion en P

PROCESO DE DESCARGA

Cuando se llega al valor maximo Ppax de la carga, preestablecido, el
movimiento es revertido y el indentador se mueve hacia fuera.

De los procesos anteriormente sefialados es importante resaltar lo siguiente:

(1) El diametro de la impresién de contacto de la superficie formada por

indentadores no se recupera durante la descarga; solo se recupera la
profundidad, ver figura 1-a.

(2) La indentacion debe ser cargada y descargada en poco tiempo antes del
comportamiento que el desplazamiento-carga llegue a ser perfectamente

reversible; por decir una cantidad limitada de plasticidad algunas veces
ocurre en cada una de las primeras cargas y descargas.
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(3) Los efectos de indentadores no 1 :idos sobre el comportamiento carga

desplazamiento pueden ser efectis mente considerados por la definicion
de un médulo reducido, Y,, a tra *s de la ecuacidn:

1 (-p%* 1-B°
1_0-p% 1-B "
Y, Y Y;

Donde Y y B son médulos de Young : la relacion de Poisson para la muestra
y Yiy Bi, son los mismos pardmetros para :1 indentador.

Luego de adquirir los datos de la cary + P y el desplazamiento h, tanto en la
carga y en la descarga, analizamos la curv: ura correspondiente a la descarga de
P vs h, figura 2. Este andlisis proporciona un >rocedimiento fisicamente justificable
para determinar la profundidad h, que deber ser usado de acuerdo con la funcién
de forma del indentador para establecer el 4r a proyectada de contacto 4 en Ppmax.

Perfi de is superficie « sspués
de sacer s carg 2

P'OMUHW“?
e P L
¥ _ "\
h':--q--- ----l --/ ————’
Rlngohoddopvch

Figura 1:Proceso de la indentacion (a) en el moinento de la carga y descarga, (b)modelo

geométrico en la recuperacion elistica, () modelo geométrico en la recuperacion
elastica y plastica.
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El modelo geométrico de deformacion que permite determinar la profundidad
h; es netamente elastico, y consiste en considerar, que después de alcanzar P su
maximo valor, el comportamiento P vs h en la descarga es inicialmente lineal, figura
2. Ese rango lineal se puede aprovechar y considerar como un comportamiento
elastico, entonces la forma recuperada elasticamente, hasta P = 0 mN, tendra la forma
tal como la figura 1-b. Esa situacion es equivalente a realizar una extrapolacion en
el rango lineal de la descarga, figura 2, y determinar asi la profundidad h.. Esto es
en realidad una aproximacion ya que en la realidad sucede una recuperacion elastica

y plastica en conjunto, figura 1-c, y esto se refleja en la curva de descarga después
de la descarga.

El paso siguiente es hallar el area de contacto A4, en funcién de h¢, en forma
similar al hallado en la dureza Vickers, referencias [2] y [3]. Este cdlculo depende
de la forma del indentador y en nuestro caso vamos a usar un indentador Berkovich
que tiene forma piramidal con base triangular, entonces:

A=245 x h} (2)

Calculados hc y 4, estos se pueden usar para propocionar medidas separadas
de Y y H . Por ejemplo de los datos P vs h de indentaciéon tal como se

muestran esquematicamente en la figura 2, se analiza de acuerdo a la ecuacion 3,
ver referencia [1].

dP 2
Rz—&;:—; Y,.\/;l- (3)

Aqui, R=dP/dh es la rigidez medida experimentalmente de la porcién superior
de los datos de descarga, y A4 el area de contacto .

Entonces el coeficiente reducido Y, puede ser determinado midiendo la rigidez

de la descarga inicial y asumiendo que el area de contacto 4 es igual al area medido
de la impresion de dureza.

Ademas, del area de contacto 4 podemos determinar la dureza da la pelicula
a partir de la definicion normal que es:

y )
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CARGA (P)

h - . .I DESPLAZAMIENTO ()

Mﬂ

Figura 2:Representacion esquematica de carga versus desplazamiento del indentador mostrando
cantidades en el andlisis, también como la interpretacion grifica de la profundidad de
contacto.

Procedimiento experimental

El equipo que se utiliza para la obtencion de las muestras, a través de la técnica
de pulveracion catddica, es “REACTIVE DC MAGNETRON SPUTTERING”. Este
equipo pertenece a la Facultad de Ciencias de la Universidad Nacional de Ingieneria.
Antes de realizar la deposicién se requiere un vacio de fondo de la camara alrededor
de 10-5 mbar. Las condiciones de deposicion se realizaron bajo una corriente de 400
mA , temperatura de 440°C, en un tiempo de deposicién de 140 minutos; los
parametros de deposicion estan indicados en el cuadro 1.

Cuadro N° 1
Parimetros de deposicion para la obtencién de recubrimiento de TiN y TiVN.
Recubrimiento Pn; (mbar) Pourar) (mbar)
ey x 104 ¢ % 103 5t
TiN 5,2 6,1
TiVN 5,6 6,3

Las medidas de nanoindentacién se realizaron en Uppsala University
Deparment of Technology, Materials Science Division. El nanoindentador utilizado
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fue Nano Instruments, Inc. Knoxville, TN. El esquema ilustrativo se presenta en la
figura 3. El indentador se mueve hacia la superficie de la muestra, buscando el
contacto, para calibrar los sensores de desplazamiento medidos capacitivamente.

Después de esto se realiza la medida de la indentacién donde el desplazamiento
y la fuerza son continuamente registrados por un computador que, a parte de
coleccionar los datos, tiene la funcion de controlar todo el aparato. El sistema tiene
resoluciones de desplazamiento y carga de 0,16 nm y 0,3 uN, respectivamente.

O

FUENTE DE CORRIENTE [

=i AMPUFICADOR LOCK-N

CENSOR DE

|Ai COMPUTADORA

Fig 3: Diagrama esquematico del nanoindentador.

Las medidas de las cargas (P) y desplazamiento h., producto de las
indentaciones que se realizaron fueron sobre muestras de TiN/AISI-316, TiNV/AISI-
316, TiN/HSS, TiNV/HSS, TiN/Si, TiNV/Si. Con el propdsito de obtener los
resultados con mejor estimacion se realizaron 10 indentaciones sobre cada muestra.
Entonces cada muestra tiene 10 base de datos de P versus h. Luego, para el caso
del TiN/AISI -316, cada uno de los 10 base de datos son graficados y que por
similitud de estas se presenta solamente una de ellas , figura 4. De cada grafica se
obtiene su profundidad respectiva he, a partir de la linea tangente cercana en puntos
cercanos que corresponden en el inicio de la descarga. Con este valor h, determinado
se obtiene el drea de la indentacion, segun la ecuacion 2 pero adicionada por un
factor de correccion propio del equipo, esto es:
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A=24,5h% +1850 x h, (5)

Luego se determinan el modulo de Young Y y la dureza H , segun las
ecuaciones 3 y 4 respectivamente.

Como se realizaron 10 indentaciones sobre el TiN/AISI-316, los valores
determinados de Y y H se promedian. Similar procedimiento, para determinar el h,
al realizado para la muestra TiN/AISI-316 se aplica para las muestras de TiINV/AISI-
316, TiN/HSS, TiN/Si, TiNV/Si. Para cada una de estas muestras se presenta una
de sus graficas de P versus h, figura 5,6,7 y 8. Una vez determinado el h,

pasamos a calcular sus respectivas areas de indentacion segun, por la ya sefalada,
ecuacion 5.

Resultados y discusiones

El espesor de los recubrimientos es alrededor de 4,31 um de espesor. El
analisis quimico realizado fue por la técnica de Espectroscopia de rayos X-XPS, [4]
y [5], y los resultados para las muestras de TiN fueron 40,033% para el nitrogeno
y 49,967% para el titanio. En el caso del recubrimiento TiVN fueron 49,8% para
el nitrogeno; 10,1% para el vanadio; 40,03% para el titanio.

Los resultados obtenidos de Y y H promediados de los 10 ensayos que s€
realizaron sobre cada muestra se presenta en el cuadro 2. Cabe sefalar la importancia
de las cargas maximas que se aplican para producir una impresién sobre el
recubrimiento [6], pues estas cargas no deben exceder mas de los 5,00 E + 01 mN.

0 ® W W W WO X0 MW
Protundidad de la indentacion (nm)

Fig.4: TiN/AISI-316, el valor de la pendiente de la recta es 0,41011 mN/nm y la profundidad
en la indentacion h_es 2,11E + 0,2nm para este ensayo.
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{
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Profundidad de ia indentacion (nm)

Fig.5: TIN/HSS, el valor de la pendiente de la recta es 0,4473 mN/nm y la profundidad en la
indentacion h_es 2,22E+0,2nm para este ensayo.

o ® w0 180 m0  2: 00 M0
Profundidad de la indentacién (nm)

Fig.6: TiN/Si, el valor de la pendiente de la recta es 0,39031 mN/nm y la profundidad en la
indentacion h_es 2,14E+0,2nm para este ensayo.

Fig.7: TIVN/AISI-316, el valor de la pendiente de la recta es 0,40184 mN/nm y la profundidad
en la indentacion h. es 2,05E + 02 nm para este ensayo.
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Profundidad de la indentacion (nm)

Fig.8: TiVN/Si, el valor de la pendiente de la recta es 0,39031 mN/nm y la profundidad en la
indentacion h_es 2,14e + 0,2 nm para este ensayo.

Valores mayores que este provocaria en nuestros resultados una influencia del

substrato.

Conclusiones

Las concluciones correspondientes a nuestro trabajo son:

e Por esta técnica se puede apreciar que los resultados de la dureza del
recubrimiento es independiente del substrato. Esto se consigue con un

Cuadro N° 2
TiN/SS. Valores promedios de las principales variables que intervienen en la
determinacion del médulo elastico y la dureza promedio.

Cada valor obtenido es resultado de 10 ensayos en cada muestra.

Muestra [Carga méximd Profundidad Area de la Modulo Y Dureza H
(mN) en la indent | indentacién (Gpa) (GPa)
h. (nm) (nm?)

x E+01 x E+02 x E+06 x E+02 x E+01
TiN / SS 4,46 2,15 1,54 2,99 2,91
TiN / HSS 5,00 2,19 1,58 3,34 3,18
TiN / Si 4,47 2,16 1,54 2,88 2,90
TiVN / SS 4,66 2,07 1,43 2,98 3,26
TiN / Si 4,39 2,10 1,48 2,88 2,99
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conveniente espesor del recubrimiento y una carga maxima aplicada. En

nuestro caso para 4,31 um de espesor se requiere una carga maxima de 5,00E
+ 0,1 mN.

En los resultados de la dureza se aprecia un ligero incremento en las muestras
de TiVN respecto a las muestras de TiN, sin embargo para el caso del modulo
elastico no se aprecia cambios para ambas muestras.

En los recubrimientos de TiN, para el espesor mencionado anteriormente, la
dureza obtenida es muy buena y en este aspecto se presenta una notable
mejoria si tomamos como referencia la publicacion [7].

Reconocimiento

Los autores queremos agradecer al Dr. Bendorf por analizar nuestras muestras

con el espectrometro de electrones ESCA 3 Mark II de VG en la Universidad de
Hamburgo - Alemania.
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Como construir un
telescopio reflector

Orlando Martinez’

RESUMEN

Para hacer observaciones astronomicas con un minimo de 390 aumentos y
una buena resolucion de imagen es necesario utilizar un telescopio de
apertura mavor que 10 cm. Sin embargo, e! costo relativamente alto que
puede signijicar su compra es desalentador para muchas personas
potencialmente interesadas en la astronomia. Por ello, decidi pulir un espejo
de 10 cm. de diametro y, con la experiencia adquirida, consegui pulir otros
espejos de mayor tamario.

En este trabajo se muestra en forma detallada como construir un telescopio
reflector de bajo costo, incluyendo las técnicas de pulido de espejos concavos

de distancias focales previamente establecidas en el diserio del telescopio.

Introduccion

Un telescopio es un instrumento que sirve para observar objetos situados a

gran distancia. En un telescopio reflector, el espejo concavo concentra en un solo
«punto» (foco del espejo) el haz luminoso proveniente del objeto, luego esta imagen

es aumentada con un ocular. La configuracion del telescopio reflector (Newtoniano)
puede observarse en la figura 1.

* Universidad Naciona! de Ingenieria/ Facultad de Ciencias/ Grupo Astronomia. Lima-Peru.
e-mail: orlandomartinez@hispavista.com
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Fig 1. El montaje newtoniano. Delante del foco F del espejo parabélico S se pone un
espejito plano Sy que refleje los rayos de luz lateralmente a F;, donde se coloca el
ocular o la placa fotogrifica, o los otros aparatos para el examen de la luz

El primer telescopio que utilizo un espejo como objetivo lo construyé Isaac
Newton en 1688; dicho espejo era metalico (aleacion de estafio y cobre), con un
diametro de 3,5 cm y una distancia focal de 16,5 cm. El espejo metalico mas grande
fue construido por William Parsons, Conde de Rosse con un diametro de 1,8 m. Si
bien el empleo de espejos corregia la aberracion cromatica de los primeros telescopios
refractores (como el anteojo de Galileo) y permitia ademas ampliar el diametro del
objetivo sin repercutir en el peso del telescopio, en cambio ellos tenian un problema
serio: «se oxidaban», motivo por el cual debian pulirse periodicamente.

Por aquellos tiempos se regreso al empleo de los telescopios refractores hasta
que se disefiaron técnicas apropiadas para pulir espejos céncavos sobre un trozo de
vidrio comun, que luego seria plateado (y en la €poca moderna, aluminizado).

Entre las ventajas del telescopio reflector podemos mencionar:

No tiene aberracion cromatica.

Recomendable para trabajo de astrofotografia.

Refleja iméagenes con buen brillo.

Bajo costo por cm. de apertura comparado con los de tipo refractor.

Razonablemente compacto y comodamente transportable para distancias
focales comparables a 100 cm.

Entre las desventajas tenemos:

 El tubo abierto en la parte delantera recibe corrientes de aire y
contaminaciones.
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e Requiere mantenimiento: Esto es, colimacion periddica.

e Para grandes aperturas (mayores a 8") son pesados y requieren montura
especial.

e Generalmente no se usan para aplicaciones terrestres porque las imagenes
observadas en el ocular se ven invertidas.

Los aspectos mas importantes en la construccion de un telescopio
reflector son:

o Apertura (D). Es la medida del didmetro del espejo. A mayor apertura,
mejor resolucion, mayor contraste, imagen mas brillante.

e Distancia focal (f). Distancia desde el espejo hasta donde converge el haz
luminoso que proviene del infinito. A mayor distancia focal se obtiene
mayor potencia, mayor tamafio de imagen y menor campo de vision.

e Poder resolvente o poder de separacion. Es la capacidad para separar dos
objetos, por ejemplo una estrella binaria, en 2 imagenes distintas separadas
unos segundos de arco. El poder resolvente es funcion directa de la
apertura. Este es uno de los aspectos mas importantes a tomar en cuenta.

La medida angular de la mancha de difraccion (disco de Airy) vale, en
radianes: 1,22 A/D 'y, en segundos de arco: 1,22 (206265) A /D.

El radio lineal de dicha mancha mide entonces: r =1,22 A (f/D).

Asi, cuanto mayor es el diametro del objetivo, menor es la imagen de la
estrella y por tanto el disco de Airy. Esta caracteristica no depende del
ocular o de otras lentes intermedias, solo del objetivo. En los telescopios,
generalmente la figura de difraccion no se puede apreciar con facilidad
debido a la turbulencia de la atmosfera y a otros defectos.

e Potencia o magnificacion (M). Nos dice cuan grande vemos el objeto
utilizando el telescopio y, depende de 2 parametros independientes:
las distancias focales del espejo y del ocular: M= f(obj)/ f(ocular).
Como regla general la maxima potencia de uso es M=60 por cada
pulgada de apertura del telescopio. Por ejemplo: para una apertura de 8",
M= 60 x 8 = 480 aumentos como maximo; pero las mejores observaciones

se hace en el rango de 20 a 35 de poder por cada pulgada de apertura,
o sea, 160 hasta 280 para el espejo de 8".
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e Magnitud limite (M.L). Existe un sistema numérico que indica cuanto
brilla un objeto estelar. A mayor magnitud el objeto tiene menor brillo.
Por ejemplo, Sirio (ubicada en la constelacion del Can Mayor) es la estrella
mas brillante con una magnitud de —1,46; Rigel (ubicada en la tinica de

la constelacion de Oriodn) tiene una magnitud 0,08; la estrella polar tiene
magnitud 2,12.

La estrella mas débil que puede verse con un telescopio es la magnitud
limite y esta relacionada directamente con la apertura:

M.L= 7,5 + 5 log (D)

o Limite de la imagen de difraccion. (Criterio de Rayleigh). Rayleigh
encontré que si la onda defectuosa real producida por imperfecciones
del objetivo, no se aparta de la onda esférica en mas de 1/4 de
longitud de onda de la luz, la imagen de difraccion no sufre mas que
débiles alteraciones. Asi, en un espejo se puede tolerar un maximo de
(0,56/4)/2 = 0,07 pm. como mayor defecto.

Fundamento teorico

FORMA DEL ESPEJO PRINCIPAL

Las leyes elementales de reflexion permiten prever facilmente que un espejo
esférico concavo dara una buena imagen de un objeto colocado cerca de su centro
de curvatura. La observacion de un astro que puede considerarse como infinitamente
alejado exige por el contrario, que todos los rayos paralelos al eje convergan en
un solo punto (foco), y esto se logra con un espejo parabolico (ver figura 2). Todo
espejo parabodlico puede aproximarse a un espejo esférico teniendo en cuenta el
criterio de Rayleigh, esto es, el espejo esférico debe tallarse de tal modo que:

f3 > 349 D*

Veamos algunos ejemplos:

D (cm) f minimo (cm)
10 70
15 120
20 177
25 240
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un objeto O situado cerca
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Fig. 2 (Arriba). Necesidad de un espejo parabélico.
Fig. 2 (Abajo). Comparacion de una parabola con 3 esferas de radios decrecientes.

TRABAJO CON EL VIDRIO Y TECNICA DEL PULIDO.

El trabajo de pulido de alta precision de las superficies del vidrio esta
dominado por dos hechos esenciales conocidos (o inconscientemente aplicados) desde
la edad de piedra: el aprovechamiento de los procedimientos de ajuste por frotamiento
y la ‘ley de los grandes numeros’.

Ajustar por frotamiento una superficie es frotarla contra otra de extension
comparable, que toma ahora el nombre de ‘herramienta’, con la interposicion de un
abrasivo, es decir, un polvo compuesto por pequefios granos cortantes mas duros
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que el cuerpo a trabajar. La combinacion del movimiento de traslacién y de la presion
que se le hace sufrir a las piezas -presion repartida sobre las duras y agudas aristas
de los granos de abrasivo- provoca en un material fragil como el vidrio una multitud

de fracturas y de pequeifios fragmentos, principalmente en las zonas sobresalientes,
que tienden entonces a aplanarse.

Si la ley del movimiento relativo de las piezas es tal, que un régimen de
presiones iguales pueda existir en todas partes, se obtendra automaticamente la
nivelacion de las superficies con una precision del orden del diametro de los granos
interpuestos. Si este movimiento esta dirigido en todos los sentidos, las superficies
tomaran necesariamente una forma esférica (o plana como caso particular) puesto
que ésta es la unica que permite el contacto con todas las posiciones. El vidrio de
arriba toma la forma concava y el de abajo (herramienta) se vuelve convexo. Los
accidentes elementales, pequefios pozos y fracturas, son también comparables en
dimensiones al tamafio de los granos interpuestos. Pero una pequefia desigualdad
en la presion, por ejemplo repetida siempre sobre el mismo punto de la carrera, puede
crear una notable deformacion; para evitarla, es necesario volver improbable esta
repeticion exacta y aprovechar la ‘ley de los promedios’. Como el trabajo exige en
total varias centenas de millares de carreras de frotacion se concibe que, si el
movimiento estd dado por la mano de una persona que sabe mas o menos la amplitud
que debe dar al movimiento, se producird a la larga una asombrosa compensacion
exacta de los errores individuales. En cierto sentido podria decirse que cuantas mas
torpezas cometa el operador, tanto mejor resultara el pulido.

Equipo y materiales

Se construy6 un banco de trabajo de madera de superficie superior circular,
de 3 patas estabilizado mediante pesas en su base. Ademas en una mesa adicional
se coloco un porta-espejos (de madera) para mantener orden y limpieza.

Es necesario disponer de baldes pequefios con agua para lavar el espejo y
recoger los abrasivos usados, pinceles y esponjas.

Los materiales e insumos usados fueron:

Esmeril en polvo: Carborundum #50, #120, #220.
Oxido de aluminio.

Oxido de cerio.

Brea.

Vidrio plano de 19 mm. de espesor.
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Metodologia para el pulido del espejo

Se usa el método de pulido de espejo a mano. Las etapas para el pulido del
espejo se muestran en el diagrama de flujo adjunto:

Corte circular del vidrio

Y
Desbastado

........................... > < limpieza

WS »l< limpieza

Alisado
.......................... > l< limpieza

Pulido con brea

l

Examen optico

Aluminizado

CORTE CIRCULAR DEL VIDRIO

Como los cortadores de diamante s6lo pueden cortar vidrios circulares hasta
de 6 mm de espesor, fue necesario desbastar el contorno circular del vidrio con
una herramienta de corte y esmeril #50. Se desbasté 6 mm por cada cara del vidrio,
luego se procedi6 a cortar con una cuchilla diamantada sobre el contorno hueco y

finalmente a lijar las imperfecciones de este wltimo corte; ademds se hizo un bisel
de 3 mm.

=1 esmeril usado fue recogido, lavado y guardado para uso posterior.
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DESBASTADO

Se coloca el vidrio llamado ‘herramienta’ sobre el banco de trabajo apoyado
sobre 1 6 2 franelas, se vierte un poquito de esmeril #120 mojado y con el disco
superior presionado se recorre su superficie segun lo indica la figura 3. Asi se logra
que el espejo superior se vuelva céncavo y el inferior convexo. Antes que las 2
superficies logren acoplarse por completo se cambia de tamafio de esmeril. Para ello
debe lavarse todos los materiales utilizados, botar todos los papeles y/o plasticos
que sirvieron de proteccidn, lavar y cubrir con una capa de laca el banco de trabajo,

guardar el esmeril #120. ;;Es mejor tomar todas las precauciones aunque parezcan
innecesarias!!

ESMERILADO

Se uso6 el carborundum #220 en cantidades mas pequeiias que en el caso
anterior (este esmeril corta mas rapido). Justo antes de lograr un buen acople de
superficies, intercambiar los espejos de posicion para bajar la velocidad de desbaste

y lograr una mayor homogeneidad en la superficie. Las picaduras del grano anterior
deben desaparecer usando este grano.

Una vez terminado este proceso, y lograda la curvatura deseada
se puede recoger el grano, lavarlo, decantarlo, separar los granos pequefios
de los grandes y utilizarlos de nuevo (los mas pequefios). Para lograr
una mejor superficie, de ahora en adelante debe intercambiarse los espejos

arriba y abajo. Obviamente se hizo primero el ritual de limpieza descrito mas
arriba.

ALISADO

Se utiliza 6xido de aluminio, el cual tiene un grano muy fino, por lo cual la
limpieza en el taller debe ser muy rigurosa. Aparte de lo descrito anteriormente debe
contemplarse la limpieza general de todos los materiales; si es posible sacar
primeramente los abrasivos gruesos del taller, cambiarse de ropa de trabajo y luego
(al siguiente dia) volver a hacer la limpieza de materiales. i; En estas circunstancias

del proceso un sdlo granito de esmeril #220 puede malograrnos horas (o dias) de
trabajo!!
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direccion y amplitud  desgoste méximo
de las carreras

T
,(//;/ en el centro L

ESPEJO
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presion de correras ceniradas,
ombas monos amplitlud 4/5 6 5/6

del diametro
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Figura 3. Carreras del desbastado:
A. Rectilineas.
B.En forma de 8.

El alisado tiene el mismo proceso de trabajo anterior y termina cuando ya
no se vea ninguna picadura grande y la superficie del espejo pueda reflejar la luz
de una bombilla a un dngulo de 30° a 45° debemos tener presente que el agua
utilizada en el alisado se seca rapidamente, corriéndose el riesgo de que los discos
queden pegados.
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PULIDO CON BREA

Para un buen pulido las superficies deben estar completamente amoldadas bajo
el mismo radio de curvatura. Esto se logra cambiando el molde convexo de vidrio

por uno de brea, el cual es mas blando y se amoldara en todo momento a la superficie
del espejo.

Sobre la superficie del molde convexo se vierte brea liquida (calentada
lo suficiente) y se practica surcos de unos 5 mm. de ancho para formar
cuadraditos de 2 cm. de lado. Se prensa con el espejo interponiendo un papel
enjabonado o plastico. Se deja enfriar y luego se puede volver a prensar.
También es buena idea usar kerosene sobre la brea al momento de prensar.
Una vez que el molde de brea tiene todas las garantias de trabajo se le pasa con
un pincel de éxido de cerio humedo y se procede a realizar el pulido con la misma
técnica anterior, intercambiando los discos. El final del pulido se logra cuando no

existan mas picaduras (o sean muy pocas y pequefias) y la superficie se presente
transparente.

TEST DE FOUCAULT

Es un método simple pero muy 1itil para examinar la esfericidad de espejos
concavos. El instrumento consiste de una rendija iluminada que sirve de fuente de
luz la cual iluminar3 el espejo, y éste convergera esa luz sobre su foco. Una cuchilla
de filo paralelo a la rendija cortara los haces como en la figura 4; si el espejo es
perfectamente esférico concavo la sombra que uno puede apreciar sera vertical; si

tiene deformaciones entonces éstas se veran como en la figura 4 D. Este aparato
de prueba fue también construido.

ALUMINIZADO

El espejo ya pulido debe ser aluminizado en su cara anterior. En el presente
proyecto, el aluminizado fue realizado en el laboratorio de peliculas delgadas de
la Facultad de Ciencias Fisicas de la Universidad Nacional Mayor de San Marcos
por el profesor César Chung, usando la técnica de evaporacién al vacio.

CONSTRUCCION DE LA MONTURA
El espejo debe ser colocado en un tubo acondicionado para el telescopio.

En el presente caso se usé tubo de PVC de 6" de didmetro el cual presenta suficiente
rigidez.

46



REVISTA DE LA FACULTAD DE CIENCIAS - UNI
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Fig 4: Explicacion geométrica del método de Foucault.

La montura usada es del tipo azimutal, con movimiento en 2 ejes: vertical
y horizontal. En verdad, una vez colocado el espejo en el tubo y dispuesto sus otros
componentes, €ste puede ser colocado en cualquier tipo de montura, siendo uno de
los mas sencillos el tipo dobsoniano por su facilidad de fabricacion.
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PRODUCCION EN SERIE

Con la experiencia de haber pulido el espejo de 10 cm y comprobado que
era demasiada la inversion de tiempo e insumos, se procedid a realizar un pulido
de 4 espejos simultdneamente. Asimismo se pretendia con ello lograr pulir espejos
con igual curvatura para asi homogenizar criterios de fabricacion o que se pueda

utilizar en telescopios de espejos multiples como el ubicado en el Monte Hopkins
o el del Monte Palomar (U.S.A.).

Por otra parte, la fabricacion individual del espejo trae consigo movimientos
repetitivos que pueden ocasionar deformaciones que fueron comprobadas en el trabajo
anterior mencionado (espejo de 10 cm de didmetro). Al tener una base mas amplia
de elementos, estos movimientos deben ser disipados sobre todos ellos, lo cual
también fue comprobado (al menos en 2 de los espejos que llegaron a terminarse
de pulir a la fecha). Para reforzar este ultimo criterio se utilizé espejos de diferentes
diametros, dos espejos de 13 cm (para lograr distancias focales iguales), uno de 12
cm y uno de 9 cm (este ultimo sélo como un espejo de prueba).

Los espejos se pulieron segun una secuencia: disco de 13 cm., disco de 9
cm., disco de 13 cm., disco de 12 cm.

Durante el proceso de esmerilado, los dos discos de 13 cm fueron
intercambiados cada cierto nimero de recorridos de las herramientas, lograndose
curvaturas casi idénticas que fueron corregidas durante el alisado por simple

inspeccion al contacto de las 2 superficies (espejo 1 con herramienta 2 y, espejo
2 con herramienta 1).

La prueba optica se hizo para el espejo de 13 cm. Al finalizar la primera prueba
se noto serias anomalias en forma concéntrica, pero de magnitud pequefia (segun
el contraste que ofrecia las sombras), siendo necesario prensar el espejo sobre la
brea y reiniciar el pulido.

En la segunda prueba la superficie mejor6 notablemente aunque en el centro
del espejo no se logré mejora. Se prensé una vez mas el espejo al molde y en la
siguiente prueba no se notaron mejoras sustanciales; lo mismo sucedio la siguiente
vez, procediéndose entonces a seguir con el pulido sin volver a prensar.

Al final del trabajo se obtuvo una superficie aceptable con una pequefia zona
ligeramente hundida en el centro del disco que no pudo ser superada. Sin embargo
al estar el espejo secundario en el centro del diametro del tubo dptico, esa area
quedara tapada, ademas dicha superficie es pequefia comparada con el total del espejo.
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Al finalizar el pulido del espejo 1 (de 13 cm) y estando a la mitad del pulido
del espejo 2 (de 13 cm) sus distancias focales son: fi= 100,8 cm; f; = 101,2 cm
con un margen de error, al tomar las medidas con el aparato de Foucault; de
0,5 cm.

Al finalizar el alisado se tuvo un gasto de 44 horas efectivas de trabajo sobre
los discos, sin contar el tiempo para cortar los discos, pulir sus dorsos y las tareas
de limpieza. El tiempo de pulido es variable segiin la calidad de la superficie obtenida
luego del alisado, no menos de 6 horas si el resultado en la primera prueba optica
fuera satisfactoria.

Aplicaciones

o La aplicacion obvia y directa es el uso que le puede dar un aficionado a
la astronomia, como es la observacion planetaria, estelar y otros.

e Siendo un telescopio econdmico (mds precisamente el pulido del espejo),
puede estar al alcance de cualquier persona o institucién y ser utilizado
con fines de enseflanza. Por ejemplo, un colegio puede adquirir el espejo
con el montaje 6ptico en el tubo y disefiar su propio soporte.

e Logrando fabricar varios espejos de distancias focales muy similares
pueden ser utilizados por alguna institucién para construir un telescopio
de espejos multiples cuya apertura equivalga a alguno de tamafo grande.

e Los espejos pueden servir como concentradores de luz de diferentes
tamanos.

Conclusiones

e Terminado el pulido y realizado el control de calidad, se midieron y
calcularon las caracteristicas del espejo de 13 cm:

Abertura libre (D) : 12,7 cm.
Distancia focal (f) : 100,8 cm.
Poder resolvente (1,17
(Para A = 0,56 um.)

Potencia médxima (M) : 300X
Magnitud limite observable (M.L.) : 13
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e Sin tomar en cuenta la inversion en horas de trabajo, el costo del telescopio
fue econémico comparandolo con uno importado:

« El vidrio para los 8 discos costé S/.5 (5 nuevos soles).
« Conseguir oculares es un problema a solucionar.

« Los abrasivos, si bien son caros, se gastan poco y, si se lavan
adecuadamente pueden utilizarse varias veces.

« El gasto por aluminizado fue por cuenta del laboratorio de peliculas
delgadas de la Facultad de Ciencias Fisicas de la UNMSM.

» El costo de la montura es variable (se estima un minimo de 30 délares
para una montura sencilla de madera).

« La montura de madera y algunas piezas metalicas se pueden construir
en cualquier taller.

« El soporte metalico del tubo éptico fue construido por el personal del
taller de mantenimiento en la Facultad de Ciencias de la UNI utilizando
materiales sobrantes que pude conseguir a bajo precio.

e Los espejos de 13 cm de apertura lograron una distancia focal cuyo error
de comparacion no excede a 0,6 cm. Se puede mejorar la técnica para
disminuir el error.
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Estudio de la estrella
binaria V505 Sgr por el
meétodo de fotometria
diferencial

Julio César Tello Galvez *
RESUMEN

En este estudio, se midio la magnitud de la estrella binaria eclipsante V505
Sgr y se hizo un analisis de la variacion de su brillo. Para este fin, se
empleo por primera vez, el fotometro fotoeléctrico OPTEC modelo SSP-5
instalado en el telescopio refractor Takahashi de 15 cm de diametro y 1050
mm de distancia focal. Las observaciones se efectuaron en junio del ario 2000
desde el fundo El Almendral (Ica) localizado a 300 Km
al sur de la ciudad de Lima.

Introduccion

No todas las estrellas que vemos en el firmamento tienen un brillo constante!.
Aquellas estrellas cuyo brillo cambia en periodos relativamente cortos de tiempo se
denominan estrellas variables. Ellas comprenden una fase critica en la vida de las
estrellas. Es posible estudiar esta fase mediante observaciones en diferentes longitudes

* Grupo Astronom/a, Facultad de Ciencias, Universidad Nacional de Ingenieria.

' El cambio apreciable de brillo aqui considerado ocurre en algunos dias. Aqui no estamos considerando
el centelleo de las estrellas debido a la refraccion de la luz estelar al pasar por la atmésfera terrestre.
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de onda a fin de poder construir modelos que expliquen el comportamiento observado
(Ripero, 1986). La investigacion de las estrellas variables proporciona mucha
informacion acerca de las propiedades estelares como masa, radio, luminosidad,
temperatura, estructura interna y externa, composicion y edad. Por ejemplo, el
determinar la relacion entre periodo y luminosidad de las estrellas variables llamadas
cefeidas ha servido para calcular las distancias astrondmicas hasta mas alla de unos
centenares de afios-luz.

Segun la variacion de su brillo las estrellas variables se clasifican en: Variables
intrinsecas, si la variacion se debe a pulsaciones o erupciones que ocurren dentro
de las estrellas mismas; y variables extrinsecas, si la variacion se debe a la
intervencion de otra estrella que se interpone entre ella y el observador.

En astronomia es costumbre referirse al brillo aparente de una estrella como
magnitud aparente (Kaufmann, 1999). Originalmente el término “magnitud” se referia
a la sensacion visual producida por una estrella. En el siglo II dc el astrénomo griego
Hiparco invento la escala de magnitud llamando estrellas de primera magnitud a las
estrellas mas brillantes. Aquéllas con un brillo de casi la mitad de las de primera
magnitud las denominé estrellas de segunda magnitud y continuaba asi hasta las
estrellas de sexta magnitud que eran las mas débiles que él podia ver. Asi pues las
magnitudes no eran sino estimados de sensacion visual sin definicién cuantitativa.
Pero ya que la respuesta del 0jo no es lineal, nuestra vista no puede percibir el brillo
absoluto de las estrellas; s6lo puede percibir aproximadamente sus diferencias
relativas. Segun Sterken (1992), Pogson (1856) asumié una escala logaritmica que
relacionaba la diferencia de magnitud observada entre dos estrellas con la
correspondiente proporcion del brillo entre ambas. A mediados del siglo XIX se
desarrollaron mejores técnicas para medir la energia luminosa que provenia de una
estrella. En base a mediciones que efectuaron los astronomos se definié que a una
diferencia de 5 magnitudes entre dos estrellas le debia corresponder una relacion
en brillo de 100 6 (2,512)°, por lo que a una diferencia de 1 magnitud le corresponde
un factor en brillo de (100)!®> 6 también 2,512. Se redefinié entonces la moderna
escala de magnitud de modo que una estrella de 1°™ magnitud es:

(2.512)>! = 2,512 més brillante que una estrella de 2da magnitud; y
(2.512)*! = 6,310 mas brillante que una estrella de 3ra magnitud; y
(2.512)*! = 15,851 mas brillante que una estrella de 4ta magnitud;

Sean las magnitudes aparentes m1 y m2, y sus correspondientes brillos
aparentes B1 y B2, entonces se cumple:

(2512 <=l = [-BL)

B,
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De donde se obtiene la denominada féormula de Pogson:

_ B,
2-ml=-=-251 —=
=251 %)

La escala de magnitud es una escala inversa, es decir que a estrellas mas
brillantes le corresponden magnitudes con nimeros bajos. Actualmente con la ayuda
de los telescopios y otros equipos se ha podido determinar la magnitud de objetos
tan débiles que alcanzan magnitud 25 y se ha corregido la magnitud de otros objetos

muy brillantes de tal manera que su magnitud incluso llega a ser negativo como es
el caso de la estrella Sirio (magnitud —1,4).

El brillo aqui mencionado esta relacionado con la luminosidad L o cantidad
de energia luminosa emitida por una estrella cada segundo. Cuando la energia
luminosa se transmite desde una fuente, se emite en todas direcciones distribuyéndose
sobre regiones de espacio cada vez mas grandes. Considerando una esfera imaginaria
de radio d con centro en una fuente de luz, se tiene que la luminosidad L dividido
por el drea total de la superficie esférica nos da la cantidad denominada brillo aparente
B. Esta cantidad es el flujo de energia o energia luminosa que pasa cada segundo
por metro cuadrado de la esfera (Kauffmann, 1999); de modo que:

L
B=
47rd2

Actualmente, y gracias a la evolucion de la tecnologia de los instrumentos
de observacion, la investigacion de las estrellas variables comprende diversas técnicas
visuales, fotograficas y fotoeléctricas. Con estas técnicas es posible confeccionar las
denominadas curvas de luz, que son representaciones en las cuales se grafica las
variaciones del brillo estelar versus el tiempo. El tipo de estrellas variables que han
sido objeto de nuestro estudio se denomina estrellas binarias eclipsantes vy
pertenecen al grupo de las variables extrinsecas mencionadas anteriormente.

Las estrellas binarias son sistemas compuestos por dos estrellas que estin
girando una alrededor de la otra y se mantienen unidas por la fuerza de gravedad
existente entre ellas (Echevarria, 1997). En general, el plano orbital de estos sistemas
puede no estar cerca de la linea visual del observador; pero en el caso especial en
que este plano se encuentre muy cerca de la linea de visioén, una de las componentes
pasara frecuentemente delante de la otra ocultindola y provocando en consecuencia
una variacion del brillo total del sistema (Campbell y Jacchia, 1946). De alli e]
nombre de binarias eclipsantes. Las componentes de estos sistemas estan tan
préximas entre si que aun a través de un telescopio aparecen como si fuera una sola
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estrella y s6lo podemos percibir de ellas el cambio de su brillo en periodos que pueden
ser de algunos afios, dias u horas.

Para descubrir si una estrella es realmente una binaria se emplea generalmente
el espectroscopio de tal modo que a pesar de que las componentes de este sistema
estdn muy cerca entre si, es posible obtener sus espectros y determinar su periodo
de revolucion analizando la oscilacion de las lineas espectrales de una componente
respecto a las lineas de la otra. Otra forma de realizar estos descubrimientos se
produce en el caso de las binarias eclipsantes donde es posible inferir su naturaleza
binaria analizando su curva de luz que se caracteriza por tener en cada periodo dos
minimos que corresponden justamente a los eclipses de cada una de las componentes.
Sin embargo atin dentro de las estrellas binarias se distinguen diferencias entre sus
curvas de luz, dependiendo entre otras cosas del tipo de eclipse estelar (total o parcial)
o de las caracteristicas de las estrellas componentes.

De acuerdo al General Catalogue of Variable Stars (GCVS) se tienen tres tipos
de sistemas binarios (ver figura 1) : En a) se tiene un sistema de estrellas binarias

LX) TR N AR A
2) Tipo Algel

|e=12.9 dias ~—|
34

E
i
:
3
F
5
i
!
3

4.0
42

L

B I I T T .

0.8 0.0 02 0.4 0.6 0.8 1.0 0.2
©) T.o W UMa Fase

Figura 1. Tipos de estrellas binarias.
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tipo Algol. Su curva de luz presenta dos minimos bien definidos (puntos 1 y 2 en
la Fig. 1a) que difieren entre si por algunas magnitudes y entre los eclipses la luz
permanece constante o varia de manera insignificante. Sus periodos pueden ser desde
0,2 hasta 10000 dias. En b) se tiene una binaria tipo B Lyrae. Este es el caso de
dos estrellas tan cercanas que sus componentes tienen forma elipsoidal y por esta
razon no estan bien determinadas los tiempos de inicio y fin de sus eclipses. Se puede
ver en su curva de luz que la magnitud nunca permanece constante en ningun
momento y sus minimos (puntos 1y 2) difieren en magnitud aunque no tanto como
en el caso anterior. Sus periodos en general son mayores de un dia. En C) se tiene
un sistema tipo W UMa, cuyas componentes estan casi en contacto y comparten por
tanto sus atmosferas externas. Las profundidades de sus minimos (puntos 1 y 2) son
casi iguales. Tienen una curva de luz en la que no se pueden definir exactamente
los tiempos de inicio y fin de los eclipses. Sus periodos son menores de un dia.

Fundamentos de la fotometria astronémica

Basicamente, las técnicas para realizar fotometria son dos (Galadi-Enriquez,
1998):

FOTOMETRIA ABSOLUTA

Mediante el cual se intenta medir el brillo de unas cuantas estrellas teniendo
como referencia el brillo de un cierto nimero de estrellas esparcidas a lo largo de
la noche, con diferentes alturas sobre el horizonte y con un rango de magnitudes
que englobe al valor del brillo que podrian tener nuestras estrellas de interés.

FOTOMETRIA DIFERENCIAL O RELATIVA

Segun la cual se mide el brillo de una estrella teniendo en cuenta un reducido
numero de estrellas de referencia denominadas estrellas de comparacion, las mismas
que deben encontrarse en el cielo relativamente cerca a nuestra estrella problema_
La fotometria diferencial mide la diferencia de brillo entre dos o mas estrellas en
un mismo campo. La fotometria absoluta, en cambio, mide el brillo absoluto de una
estrella en una escala definida de magnitudes.

Un instrumento que permite medir el brillo de una estrella es el fotometro
fotoeléctrico que consiste de un tubo fotomultiplicador (Kitchin, 1984). En uno de
los extremos de este tubo se encuentra el fofocdtodo donde incide la luz de la estrella.
El fotocatodo se encarga de liberar fotoelectrones que son acelerados por un
potencial positivo hacia un electrodo cargado negativamente (primer dinodo). Cada
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fotoelectron incidiendo sobre el primer dinodo es capaz de excitar electrones a estados
de energia mas alta de modo que aquéllos con suficiente energia para superar la
funcién trabajo del primer dinodo seran emitidos y luego acelerados mediante un
potencial mas alto al siguiente dinodo donde nuevamente se produce emision
secundaria. Este proceso se repite en cada dinodo hasta obtener una avalancha de
electrones que finalmente son recogidos por el anodo y producen una corriente
eléctrica que es proporcional al numero de fotones que interactuan con el fotocatodo.
Finalmente la sefial eléctrica producida por el énodo es digitalizada por un convertidor
V/F y liberado como un tren de pulsos que pueden ser contados. Por lo tanto la setial
de salida es directamente proporcional al brillo de la luz incidente y su medicion
se reduce a la medida de corrientes eléctricas o a un cierto nimero de cuentas si
el circuito esta digitalizado.

Como el brillo B que incide en el detector es igual a la energia neta de la
estrella por unidad de area A incidente y por unidad de tiempo t, entonces

B = ( En J

Axt
La energia neta de una estrella es la energia después de corregida la
contribucién del fondo? del cielo en la zona préxima a la estrella. Asi pues si Iy
es el total de cuentas medido al observar la estrella variable y Is es el total de cuentas

medido del fondo del cielo de la estrella variable entonces la energia neta de la estrella
variable Eny serd proporcional a Iny:

EnV a InV =IV _IS (2)

Anidlogamente, para el caso de la estrella de comparacion C también se mide
su energia neta Enc:

Enc a InC =]C "'ISC (3)
Siendo

Ic : el total de cuentas medido al observar la estrella de comparacion C.

Isc: el total de cuentas medido del fondo del cielo en la zona préxima a la
estrella de comparacion.

2 La contribucién del fondo puede deberse a otras fuentes de luz no deseadas (otras estrellas, luz zodiacal,
luz artificial, etc.)
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Entonces la razén de los brillos By y B¢ (debido a la estrella variable V y
a la estrella de comparacion, respectivamente) sera:

By (in )
B | In, ..(4)

En fotometria diferencial utilizamos la férmula de Pogson (ecuacioén 1) algo
modificada:

m, =-25log [ In, )+ m, ..(5)

Rel
donde

my, m¢c: Las magnitudes de la estrella variable y de la estrella de
comparacion, respectivamente.

Ya que una fuente de luz, en general, estd compuesta de diferentes longitudes
de onda y todos los detectores no tienen la misma respuesta para cada longitud de
onda, se tendran diferentes magnitudes de acuerdo a aquélla que se esta detectando.
Para obtener una medida en una determinada longitud de onda se emplean los filtros
que dejan pasar la luz en una determinada banda. De esta manera, y de acuerdo al
conjunto de filtros que se emplean se tienen diferentes sistemas. Por ejemplo el
sistema Johnson-Morgan se compone de los siguientes tipos de filtros: U (365 nm),
B (440 nm), V (550 nm), R (720 nm), I (900 nm). Si nosotros tuviéramos el espectro
completo de una estrella podriamos ver que la curva graficada alcanzaria un pico
en una determinada frecuencia. Luego de acuerdo a la ley de Wien se podria
determinar la temperatura de dicha estrella para esa frecuencia pico.

Observacion de la estrella binaria V505 Sgr

Para las observaciones se emplearon el telescopio refractor Takahashi (1050
mm de distancia focal y 15 cm de didmetro) y el fotometro fotoeléctrico marca
OPTEC modelo SSP-5. Este tltimo llegd como donacion al Instituto Geofisico del
Peri y empez6 a usarse justamente para este trabajo de astronomia.

Se eligio la estrella variable V505 Sgr, entre otros motivos por ser
representativa de las binarias tipo Algol, porque sus respectivas estrellas de

S8
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comparacion tienen casi el mismo tipo espectral y porque eran lo suficientemente
brillantes para ser observadas por nuestro telescopio. Informacién sobre estas estrellas
fue obtenida de las paginas web SIMBAD y VSNET (ver Tabla 1). Para ubicar estas
estrellas en el cielo empleamos los mapas Sky Atlas 2000.0 adquiridos por el Grupo
Astronomia (Ver Figura 2). El objetivo fue realizar mediciones del brillo de esta
estrella segun la técnica de fotometria diferencial, empleando para ello 2 distintas
estrellas de comparacion (las estrellas HD187664 y HD18741 1). Las observaciones
se efectuaron durante las horas en que estas estrellas estaban cerca del cenit y
cuando la reduccion de la intensidad de radiacion debido a la absorcién y dispersion
de la atmésfera terrestre es minima. El tiempo de exposicién empleado se fij6 en
10 segundos. El filtro empleado fue V, que corresponde a la longitud de onda de
550 nm.

De ahora en adelante a la estrella binaria eclipsante V505 Sgr se le denominaré
indistintamente V505 Sgr o estrella variable V:; mientras que a las estrellas HD
187664 y HD187411 se les denominara estrellas de comparacion Cl y C2,
respectivamente. Para este estudio se tuvieron ue observar 6 objetos: las estrellas
V,Cly C2,y el cielo que rodea a cada una de estas estrellas Sy, Sci, Sca. Se procedi6
a medir el nimero de cuentas en el detector de estos ltimos 3 objetos para obtener
las energias netas, segun las relaciones (2) y (3). Para cada objeto se realizaron 3
lecturas seguidas del nimero de cuentas y se obtuvo el promedio de las mismas.

.~ Ecuatoriales' |  (FitroV) Espectral!
o E ] L @Yy
Asc Recta Declinacién
V505 Sgr | 19h53m06,39s -14°36" 11,5” 6,46 - 7,512 AlV
HD187664 | 19P51m4] 845 -14°46" 36,7 6,887! A3III
HD187411 | 19h50m22,59s -14°56" 12,2” 8,1! A7V

Tabla 1. Datos de la Estrella V505 Sgr y de sus estrellas de comparacion

Periodo :1.18287156 dias?

1 Fuente. : SIMBAD

2 Fuente : VSNET
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Figura 2. Estrella variable V505 Sgr y sus estrellas de comparacion C1 y C2.

Con los valores promedio de lv, Is, Ici, Isci, Ic2 y Isc2 obtenidos en cada
observacion (sea una estrella o el fondo del cielo) se calculd por diferencia Iny, Inci,
Inc2, segun se indica en las relaciones (2) y (3). Luego se calculd la magnitud de
V empleando la relacion (5) y tomando la estrella de comparacion C1 como
referencia. De igual manera se calculd la magnitud de V tomando la estrella de
comparacion C2 como referencia. Por lo tanto se obtuvieron 2 curvas de luz de la
estrella variable.

Resultados y discusion

Debido a que la escala de magnitud es una escala inversa (mayor numero
corresponde a estrellas menos brillantes) se acostumbra trazar el eje vertical de
magnitud en forma creciente hacia abajo. De esta manera cuando se produce un
eclipse en una estrella binaria el brillo total del sistema decrece y esto se manifiesta

en una caida de su curva de luz desde las magnitudes de valores bajos a magnitudes
de valores mas altos.
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Por las referencias se sabe que la estrella V505 Sgr es una binaria del tipo
Algol y segiin los datos de VSNET el periodo es de 1,18 dia y la magnitud varia
entre 6,46y 7,51 (Ver Tabla 1). También se muestra las magnitudes de las estrellas
de comparacion segun la base de datos SIMBAD.

En la Tabla 2, se presenta un resumen de las observaciones realizadas cada
noche. Las horas que se efectuaron las observaciones aparecen en Tiempo Universal
(T.U.) y corresponden a la hora en Perti mas 5 horas. También se muestra el tiempo
transcurrido desde las observaciones de la primera noche, algunos valores de la
magnitud medida de V505 Sgr, mediante las dos estrellas de comparacion (C1 y C2)
y la magnitud medida de estas estrellas de comparacion.

| Tiempo 5 5 Magited Medida

'(ﬁ“;”)‘ | mV €y mV (cz)', MC1 MC2

B : » | (689 (8.10)
01:44:35 0,00 6,64 6,69

28 Sep.| 03:14:36 1,50 6,59 6,59 6,90£0,02 | 8,09%0,02
04:41:46 | 2,95 6,54 6,59
01:33:36 | 23,82 6,64 6,64

29 Sep.| 03.47:16 | 26,04 7,51 7,51 6,86£0,05 | 8,13£0,05
04:48:46 | 27,07 7,27 7,28

Tabla 2. Observaciones de V505 Sgr

Los resultados pueden verse en las figuras 3, 4 y 5. Se puede notar que para
un instante determinado la magnitud de la variable medida mediante las estrellas
C1y C2 coinciden aproximadamente durante toda la sesion de observacion. Ademas
puede notarse en las figuras 3 y 5 la magnitud de la estrella de comparacién C2
mientras que en la figura 4 aparece la magnitud de la estrella de comparacion C1.
Se observa que la magnitud medida de las estrellas de comparacion no varia
significativamente por lo que se les puede considerar de brillo constante.

En la figura 3 se tienen las magnitudes medidas de la estrella V505 Sgr entre
los dias 28 y 29 de septiembre de 2000 (Tiempo universal). En esta figura, la forma
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de la curva de luz parece indicar que durante las observaciones de la estrella variable
se registraron dos eventos separados: uno, mientras terminaba un eclipse (en la

primera noche de observacion) y el segundo, al inicio de otro eclipse (segunda noche
de observacion).

Figura 3. Observaciones de estrella variable V505 Sgr (28-29 septiembre 2000 TU).

Para analizar con mas detalle la curva de luz de la estrella V505 Sgr en la
figura 4 se muestran los resultados correspondientes a la primera noche de
observacion y la magnitud de la estrella de comparaciéon C1 con respecto a la
estrella de comparaciéon C2. Durante esta noche de observacién la magnitud
medida de la estrella de comparacién C1 fue de 6,90+0,02 (la magnitud de C1 en
promedio fue de 6,90, con una desviacion estandar de 0,02). El resultado es muy
cercano al valor de referencia de SIMBAD (6,887), lo que significa que las
mediciones fueron correctas. Con respecto a la estrella variable, en ese mismo
intervalo de tiempo se presento una ligera variacion de la magnitud desde 6,66
al inicio hasta 6,56 después de transcurridos 2,95 horas haciendo una variacién de
—0,10 (aumento su brillo).
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Figura 4. Observaciones de estrella variable V505 Sgr (28 Septiembre 2000 TU).

En la figura 5 se tiene la curva de luz de V505 Sgr para la segunda noche
de observacion. Aqui, la magnitud medida de la estrella de comparacion C2 respecto
de la estrella de comparacion C1 es 8,13+0,05 (la magnitud de C2 en promedio fue
de 8,13; con una desviacién estandar de 0,05) lo cual indica que es casi constante
y cerca del valor de referencia 8,1 (Ver cuadro 1). Con este resultado podemos confiar
en la precision de nuestras mediciones de la magnitud de V505 Sgr. La segunda noche
de observacion la magnitud de la variable fue inicialmente 6,64 en promedio y luego
hubo una tendencia a disminuir su brillo hasta alcanzar 7,51 de magnitud en
promedio. De alli vuelve a aumentar su brillo hasta que finalmente, después de 3,25

horas; alcanza la magnitud 7,27 (+0,63 de variacion en magnitud en todo el intervalo
de observacion ).

La forma de la curva de luz indica que se estaba produciendo un eclipse (la
variacion méxima fue de 0,87 magnitudes en 2,22 horas). Para saber si se trataba
del eclipse de la estrella principal (la mas brillante) revisamos las referencias. Segun
estas, la magnitud minima debe ser 7,51; que es cuando se produce el eclipse de
la estrella més brillante. Se obtuvo justamente este valor. La magnitud maxima debe
ser 6,46 y los resultados obtenidos fueron 6,64.
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Figura 5. Observaciones de estrella variable V505 Sgr (29 septiembre 2000 TU).

Con la finalidad de explicar la forma de la curva de luz de la estrella V505
Sgr en la figura 5 se hara una revisién de qué ocurre al producirse el eclipse. Por
las referencias (Tabla 1), cuando no hay ningun eclipse la magnitud de la estrella
variable debe ser maxima e igual a 6,46. Luego cuando la estrella mas brillante
empieza a ser eclipsada por su compaiiera, su brillo empieza a descender y por tanto
su magnitud varia del valor inicial mencionado; pasando por 6,64 (magnitud medida
cuando se inicid la observacion), hasta alcanzar el valor de 7 ,51 cuando el eclipse
de la estrella principal es maximo (este valor fue registrado durante las
observaciones). De alli la magnitud vuelve a cambiar pasando por 7,27 (registrado
cuando se termino la observacion) hasta alcanzar nuevamente el valor de 6,46. Con
estos resultados se puede deducir que se ha observado una parte del eclipse principal.

Conclusiones

Se ha visto que la técnica de fotometria diferencial empleando un fotometro
fotoeléctrico produce resultados muy cercanos a las referencias por lo que se puede
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afirmar que, los resultados obtenidos son bastante precisos. Teniendo en cuenta lo
anterior, se puede realizar observaciones de las estrellas y con mayor precision
aquéllas como las variables, siendo de gran interés en el drea de astronomia. Aqui
solo se ha obtenido una parte de la curva de luz de la estrella variable mencionada.
De la curva completa, se podria deducir el periodo de esta curva que viene a ser
el periodo de rotacion del sistema binario.

Como mencionamos los filtros dejan pasar la luz en una determinada banda.
Nosotros hemos observado en la banda que corresponde al filtro V (550 nm). Pero
no es necesario tener el espectro completo, ya que en una estrella la diferencia de
magnitud entre las bandas B-V, V-R, etc. nos permite inferir la curva del espectro

que se ajusta a la del cuerpo negro con la cual se puede obtener la temperatura
superficial de la estrella.

Finalmente, como se menciond al comienzo, las técnicas fotométricas pueden
realizarse con diversos instrumentos. Sin duda algunos seran mas precisos que otros.
Uno de los instrumentos que mas se emplea en la actualidad es la camara CCD.
Este instrumento tiene ademas la gran ventaja de permitir obtener imagenes de dichos
objetos. El Grupo Astronomia de la Facultad de Ciencias cuenta ya con una camara
CCD con la cual podran realizarse estudios fotométricos.
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Solucion local completa
para un punto material
sobre la tierra rotante

H.G. Valqui*

RESUMEN

En los mas conocidos textos de Mecanica [ver Referencias]
existe cierta confusion con respecto: i) Al uso de la segunda
Ley de Newton en una referencia no inercial, ii)Al uso de varia referencias,
entre las que exista rotaciones. Adicionalmente se suele obtener las
ecuaciones diferenciales locales resultantes en forma (innecesariamente) solo
aproximada. En el presente articulo se eligen las referencias de manera que
se aplica la SLN solo en una referencia inercial (sin recurrir al artificio
antipedagogico de las fuerzas ficticias) y se obtiene las ecuaciones
diferenciales de las coordenadas sin aproximaciones. Interesantemente, en el
caso particular de un proyectil, la solucion resulta (contraintuitivamente)
periodico-senoidal. Se muestra que, sin embargo, tal solucion
es consistente con el caso limite de la Tierra no rotante.

ABSTRACT

The usual Classical Mechanics books (see Ref.)
contains some confusing ideas about:

*Facultad de Ciencias / Universidad Nacional de Ingieneria.
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i)The application of the Second Newton's Law in not inertial references,

ii)The tranformations of coordinates between references which rotate with

relation to each other. Furthermore the differential equation for the local
coordinates are unnecessarily gotten only approximately.

In this article the Second Law is applied only in an inertial reference
(thus avoiding the use of fictive forces) and the corresponding differential
equation are constructed exactly. In the particular case of a projectile,
although the equations for the coordinates are mathematically periodic it is
shown that they are physically sound and in agreement with the limit case of
a non-rotanting Earth.

Consideremos tres referencias, donde los ex°, ex’y ex son vectores geometricos

que caracterizan a los ejes de tales referencias:

i)

ii)

iif)

S° es una referencia inercial, cuyo origen esta en el centro de la Tierra

esférica, O°, y cuyos ejes apuntan a la estructura rigida de las estrellas lejanas,
siendo el tercer eje O%;° coincidente con el eje polar terrestre,

S’ es una referencia auxiliar, fija a la Tierra, cuyo origen y tercer eje, O’es’,

coinciden con el origen y tercer eje de S° (y cuyos dos ejes estan en el plano
ecuatorial). Esta referencia rota, alrededor del eje O°e3° con velocidad angular
w, de manera que w = w-e;°.

S es una referencia local, fija a la Tierra, cuyo origen, O, esta sobre la
superficie de la Tierra, en el plano formado por Oe,’e;’, de manera que 0O°0O
forma el éngulo geografico y con el eje Oe;’.

Como puede apreciarse del dibujo, los vectores unitarios de S’ se obtienen

de los de S°, segun:

e’ = e;°coswt + e,° senwt [1]
e’ = —e;%senwt + €;° coswt [2]
e’ = e3° [3]

con e;’ x e’ = €;° x €,° = e3°

Por otra parte, también obtenemos:

e =—e;’ [4]
e; = —seny-e;’ + cos y- e3’ [5]
e3 = cosy-e;’ + seny-es’ (6]

cumpliéndose que, e; x e; = e;.
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Entonces los vectores gedmetricos unitarios de la referencia local S quedaran
expresados, como combinaciones lineales de los vectores unitarios de la referencia
inercial S°, de la siguiente manera:

e; = — coswt €,° — senwt €2° (7]
e; = seny- senwt €,° — seny-coswt-e;° + cosy-esz° (8]
e3 = —cosy- senwt €;° + cosy-coswt e° + seny es° 9]

En lo que sigue usaremos las igualdades [4], [5] y [6], sin que nos interese
el significado geométrico de los vectores ey’ (direcciones de los ejes de S’).

Consideremos un punto material P del espacio (en la vecindad del origen de
S). Diremos que un observador es un observador propio de una referencia cuando
dicho observador use a tal referencia para localizar los puntos materiales.

Para un observador propio de S el vector geométrico de posicion de dicho
punto material serdi OP, mientras que para un observador propio de S° el
correspondiente  vector geométrico de posicion sera O°P=0°0 +OP =Re; +OP,
donde R es el radio de la Tierra.

[Notemos que OP, como cualquier otro vector geomeétrico, puede ser escrito
como una combinacion lineal de los vectores geométricos de base de la referencia
S, de la referencia S°, o de cualquier otra referencia).
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Sea r = xj-e; + Xye; + x3-€3 [10]
donde xx son las coordenadas de P en la referencia S, es decir, OP = r.
Consecuentemente O°P = R-e3 + r.

Para el observador propio de S los vectores geométricos e estan fijos, de
manera que la velocidad, v, y la aceleracion, a, del punto material P, seran:

V=X e + X2 e2+ X3 e3 a=x; e+ x2 e+ x3 e3 [11]

En cambio, para el observador propio de S° los vectores geométricos ex varian
temporalmente de manera que, para él, la velocidad, »°, y la aceleracion, a°, del punto
material P quedaran expresados por:

W =v+ X e+ Xy e+ X3 es
a°=a+2(x7 e +Xye+Xx3e3)+x;e +Xyer + X3 ey

Por otra parte tenemos,

el. = _ e],.

e’ = seny ex’"+ cosy e3’’

e3’ = cosy ey’ "+ seny e;3’’
.o see

el =—e’", ey =-—seny-ey’ "+ cosyees’”

e;’” = cosy e’""+ seny e3’”

donde, teniendo presente que los vectores geométricos ey° son fijos para un
observador propio de S°,

50

e.”” = w (—e° senwt + e3° coswt),
= —(e;° coswt + e,° senwt),
e’ =0.

Ahora, teniendo presente que

e°=—e3® x e°

e’ = e3° x e;° obtenemos
e;” = wex e’

e’ = w.e® x ey

e;’= 0y también:

e’ = w2e®x (e3° x e)
"= w?es® x (e3°x e)

e;’"=0

3
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Reemplazando esto en las expresiones para ex’ y e, obtenemos:

e;” = wes x e

e = wel x e

e;’ = we x e;

er” = w2e® x (e3° x ej)
e = w? e3° x (e3° x €)
e3”'= w? e3° x (e3° x €3)

con lo cual los vectores +° y a° toman las formas:

W =v+we’xr [12]
a° = a+ 2'wex v+w? e x (e°xr) [13]

donde w'e:° es el vector de la velocidad angular de la Tierra (y por lo tanto, velocidad
angular de S) con respecto a S° (es decir, con respecto a las Estrellas Lejanas. Esta
es la aproximacion que estamos considerando).

Por otra parte, de [8] y [9] obtenemos que;

cosy e; + seny e3 = €3° [14]

de donde obtenemos:

e:° x v = (X3° cosy — X" seny) e; + X;" seny e; — X|  COSY €3
e3° x (e3°x 1) =—X, "e; + (X3' cosy — Xz'seny)seny €2 — (X3' cosy — Xz’ seny)cosyes

lo cual, reemplazado en [13], nos permite escribir la aceleracion, a?, de la particula
puntual con respecto a la referencia inercial S°, en funcion de los vectores
geométricos unitarios de la referencia local S (es decir, como combinacion lineal
de los vectores unitarios de S):

a =a+t

2w [(x3° cosy — X;" seny) e; + X;” seny e;— X;" cosy e3 ] +
w2[— X1 e] + (X3 cosy — X, seny)seny e — (X3 COSY — X2 seny) cosy e;] [15]

Por su parte, el vector geométrico F que representa a la resultante de las
fuerzas que estan actuando sobre el punto material (y que puede depender tanto de
la posicion como del tiempo), puede ser expresado como combinacion lineal de los
vectores de la base S, o de los vectores de la base de S° como mejor convenga.
Siendo S° una referencia inercial, podemos aplicar la Segunda Ley de Newton:

F = ma° [16]

que se constituye en la ecuacion diferencial del movimiento.
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A continuacion trataré de lograr que esta ecuacion vectorial, [16], genere
ecuaciones escalares facilmente integrables.

Primeramente, multiplicando [16] escalarmente por e3°, obtenemos una
ecuacion diferencial ordinaria, para la variable r - e3°:

Fee’=m(r.e°"” [17]

Con el fin de obtener otras ecuaciones diferenciales escalares multipliquemos
[16] escalarmente por un vector constante q, que caracterizaremos mas adelante.

Teniendo en cuenta [13], obtenemos

qQ-F =m[qea + 2w qee;°x v + w? qees® x (e3° x r)] [18]

Ahora trataremos de elegir q de manera que [18] se convierta en una ecuacion
diferencial ordinaria para la variable q « r. Notemos que:

qea = (qer)", q-e3° x v =[(q x e3°)er]’ q-e3° x (e3° x r)=(q x e3°) x e3%r

Yy que si existiese un numero ¢ tal que q x e3° = oq, entonces (q x e3°) x e3°~c?q,
con lo cual:

q-a = (qer)’, q-e3° x v =c (qer)’ q-e3° x (e3° x r) = o’qer
y la expresion [17] tomaria la forma:

q-F = m[(qer)” + 2ewec(qer)’ + w2 o2 qor] [19]

que es una ecuacion diferencial ordinaria, para la variable qer.

Si o fuese un numero real la ecuacién q x e3° = C.q no poseeria solucion,

pues el primer miembro seria perpendicular al vector q, mientras que el segundo
mienbro resultaria paralelo al mismo vector q. Tratandose de una ecuacién con
vectores geometricos, conviene expresar q = q;° e;° +q-° e2° + q3° e3°, entonces la
condicion q x e3° = ¢ q toma la forma:

Q2° e°—qi° e°=0c q esdecir, °=06 q°% —q°=0 q° q°=0

de donde obtenemos ¢?=—1,c=% i, q=c (e;°+ ¢ €2°), donde ¢ es una constante

arbitraria que, por afectar a ambos miembros [18], puede ser considerada igual a
la unidad.
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Por otra parte, con el objeto de expresar q en la base de la referencia S, de
[7], [8] y [9] despejaremos:

e1° = —Ccoswt e; + seny senwt e; — COSy senwt e3 [14.1]
e° = —senwt e; — seny Coswt e, + COSy COSWt €3 [14.2]

lo que permite escribir
q =—(coswt +c senwt)e| — & seny (coswt + & senwt)e; + G cosy (coswt + & senwt)es

es decir,

q=—¢"p, p=e +ou u=seny e — Cosy e; [20]

Ahora teniendo presente que:
(fe™)" =f"+owf +c?wf)e™
la ecuacion [19] puede escribirse como:
(q-F) e = m([(q.r) e°™]"

0, también:
(p°F) 20wt = m[(p-r) eZc-w-t]“, o2 = —] [21]

que es la ecuacion diferencial buscada, para la variable p.r.

Notese que ya contamos con tres ecuaciones diferenciales escalares reales;una
primera estd dada por [17], las otras dos estan implicitas en la parte real y la parte
imaginaria de [21]. Ademas, los segundos miembros de dichas ecuaciones son
directamente integrables. Las dificultades podrian presentarse en las integraciones
de los primeros miembros de las mencionadas ecuaciones, que dependen de la forma
de la fuerza actuante.

Caso de una fuerza constante

Consideramos un cuerpo en la vecindad de la superficie de la Tierra, y en
la vecindad del origen de S . Entonces podemos suponer que la fuerza que la Tierra
ejerce sobre dicho cuerpo puntual no cambia de direccion, es decir, F es constante.

Entonces tanto F.e3° como q.F son también constantes y las ecuaciones [17] y [19%]
se pueden integrar facilmente:

r.e:® = A+ Bt + (1/2m)t? Fee:° [17%]
(por) 2% = — (1/4mw?) (poF) e + (Ct +D) ¢
per = — (1/4mw?) (peF) + (C t +D) e2o™ [21%*]
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donde A,B,C,D son constantes de integracion, a ser determinedas por las condiciones
iniciales.

Notese que [17*] y [21*] estan expresadas en la referencia S, y que e3° juega
el papel de un vector de significado netamente matematico, dado por [14].

Derivando [17*] y [21*] con respecto al tiempo (F y ex son constantes),
obtenemos:

vees® = B + (1/m)t-Fee;° [17%*]
Pv = (C—20wD — 20wC t) e2owt [21*%*]

Si ahora designamos con r, y v, la posicién y la velocidad iniciales de la
particula puntual, de [17*], [21*], [17**] y [21**] obtenemos:
Foces® = A, pero= —(1/4mw?)’ (peF) + D, vpees® =B, pev, = C — 26wD [22]
de donde:
A =rgee3°, B=ygee;°, C= pe[vo + 20w (r, + F/4Amw?)], D = pe(r, + F/4mw?)

[22%]
o también,

C=C+o0 Cy, D=D1+0D2,con

Ci=vio—2wD3, Cz= uevo+ 2wD;, D= (x50 + Fi/4mw?), D; = ue (r, + F/4mw?)

Reemplazando esto en [21*], obtenemos:

x1 = Fi/(4mw?) + (C; t + D))cos2wt + (C; t + D»)sen2wt [23]
X2 SenyY — X3 COSY =

—1(4mw?)(F; seny —F3 cosy) + (C, t + Dy)cos2wt — (C) t + Dy)sen2wt [24]
y, de [17*]

X2 COSY + X3 seny =
X20 COSY + X30 seny + (V2o cosy + v3p seny) t + (12m)(F> cosy + F3 seny) t?
[25]

que es la forma general de las ecuaciones de las coordenadas locales de un punto
material, sometido a una fuerza constante. Nétese que w se encuentra en el
denominador, por lo cual no es posible tomar simplemente w=0, para comparar este
resultado con el que se obtiene para el caso de la Tierra no rotante.
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Para mejor apreciar las caracteristicas de la solucion anterior, consideraremos
el caso de una ‘piedra’ que cae desde una altura H, con velocidad inicial nula; es
decir, F = -mge;°, r,= Hes, v,= 0. En tal caso tendremos:

X;= (Cyt + Dy)cos2wt + (C, t + Dy)sen2wt

Xz seny — X3 cosy = —(g/4w?) cosy + (Cz t + Dy)cos2wt — (C; t + Dy)sen2wt

Xy cosy + X3 seny = (H — g t¥/2) seny

con

Ci=-2w Dy Ca=0, D;=0, Dy=—(H— g/4w?) cosy.

Es decir,
x1= (H — g/4w?) 2w t cos2wt — sen2wt) cosy [P1]
X = [-g t2/2 + (H — g/4w?)(1—cos2wt — 2w t sen2wt)] seny cosy [P2]

x3= H— (g t2/2) sen?y — (H — g/4w?) (1—cos2wt — 2w t sen2wt) cos’y  [P3]

Las soluciones [P1, P2, P3] (comparadas con lo que se conoce para el caso
w=0) aparentan sufrir dos inconvenientes significativos:

i) A pesar de referirse a una ‘piedra’ que cae, ellas son periodicas,
ii) En el desplazamiento vertical, x3, el sumando debido a la aceleracion
gravitacional depende fuertemente de la posicion geografica, .

e Con respecto a la forma periodica de las soluciones, debemos tener presente
que no todas las caracteristicas del modelo matematico representan
necesariamente caracteristicas fisicas. En el presente caso, las soluciones son
validas solamente en las vecindades del origen de S, donde se puede suponer
que la fuerza de atraccion de la Tierra es constante. Esto significa un recorrido
del proyectil que (en su movimiento Este- Oeste) no sobrepase, digamos, 10°
610 x © / 180 ~ 0,17 radianes; es decir, wt < 0,17. Asi se ve que el
(matematico) efecto periédico no tiene tiempo para manifestarse.

e La fuerte dependencia de las soluciones con respecto a la posicion geogréfica
es,efectivamente, sélo aparente. Para ver esto desarrollemos las funciones
senoidales en series, hasta el 4° orden (wt es pequeio):
sen2wt ~ 2wt — 4w3t/3, cos2wt ~1 — 2wt? + 2wtY/3
Entonces,

X; & — 2w 3(4Hw? — g) cosy = 2w g t* cosy — 8w3 t* cosy
X2~ —w2t2 [2H (1 — w?t? + g t%/2)] seny cosy

2 1
x3~ H- g t¥/2 + w?? 2H - 3 Hw?t? + 3 gt?] cosy
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donde podemos apreciar que, para X, y X3, las desviaciones con respecto al
caso limite w = 0 son muy pequefias (proporcionales a w?t?). En cambio,
la desviacion para el caso de la coordenada Este-Oeste es mas apreciable,

proporcional a wt?, y se lo conoce como efecto de la (inexistente) fuerza de
Coriolis.

Conclusion

Partiendo de una referencia inercial se han obtenido, en [17] y [21] tres
ecuaciones diferenciales exactas que describen la dinamica de una particula material
con respecto a una referencia local terrestre, y cuyos segundos miembros son
directamente integrables. Por otra parte se han obtenido las ecuaciones generales
para el movimiento de un proyectil, [23-25], verificando en un ejemplo que, a pesar
del caracter matemdticamente periddico de aquellas, dichas soluciones son
consistentes con el caso limite de la Tierra inercial y, también con los resultados
experimentales que suelen ser justificados recurriendo a la fuerza ficticia de Coriolis.

Ademas debo mencionar que las formulas obtenidas para el caso del proyectil
coinciden solo parcialmente con las aproximaciones presentadas en los textos de la
referencia bibliografica.
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Los estados cuanticos y los
ejes principales de inercia

Holger G. Valqui

RESUMEN

Entre los estados cuanticos, con los operadores que respresentan a los
observables fisicos, y la matriz de inercia de una distribucion de masa con sus
ejes principales, existe una similitud matematica que permite visualizar el
significado de conceptos tales como: estados propios de un Sistema Fisico, SF,
simetria de un SF y degeneracion de los valores propios, modo de accion de
las perturbaciones, estabilidad de los valores propios y de los correspondientes
estados cuanticos del SF. Tal hecho puede ser aprovechado ventajosamente
para enriquecer la intuicion de los estudiantes de los cursos de
Mecanica Cuantica.

ABSTRACT

There exists a mathematical similarity between quantum states, with its
operators representing the observables of a physical system, and the Matrix of
Inertia corresponding to a mass distribution. This fact provides an
advantageous way to grasp the meaning of quantum concepts like proper
states, symmetry and degeneration, perturbations, stability of the proper values
and the corresponding states. This fact could be profitably used to enhance the
students’ intuition for lectures on Quantum Mechanics.

* Facultad de Ciencias / Universidad Nacional de Ingenieria.
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En el modelo cuantico, el compor-
tamiento de un Sistema Fisico, SF,
constituido por un conjunto de parti-
culas sometidas a un cierto potencial
V (y ciertas condiciones de contorno),
esta determinado por la ecuacion
estacionaria de Schroedinger:

He=Eo
donde el operador H = (12m)P2 + V
permite extraer toda la informacion
sobre la energia, del SF, contenida en
la funcion de estado estacionario @ .

En el modelo cuantico, los ope-
radores que representan a los
observables fisicos son autoadjuntos,
H* = H. Esto tiene como consecuencia
que: 1) Los valores propios de tales
operadores son reales, ii) A dos valo-
res propios diferentes corresponden
vectores propios ortogonales uno al
otro, iii) Las funciones propias de un
operador, que representa a un
observable, constituyen una base del
espacio (de Hilbert) que sirve para
describir al SF.

En el caso de que ¢ sea un estado
propio del operador H, entonces E es
precisamente la energia que posee el
SF en dicho estado. Pero si ¢ no es un
estado propio de H, entonces ¢ sera
la combinacion lineal de los estados
propios ¢x de H, Hdx = Ex ¢«

@ =2k ax ox (¢, dx unitarios)

y E() sera el valor promedio de la

En el modelo cldsico de la
Mecanica, dado un SF constituido por
N particulas de masa my localizadas
en los puntos Py , y dado un punto Q
arbitrario se define la matriz de inercia
del SF,

Mg = 2k m(QP¢" QP — QPx QPy")

(Por supuesto que en el caso continuo
se trata de una integral)

donde x , QPy son vectores columna,
mientras que los vectores transpuestos
son filas, de manera que p*q
representa a un producto escalar, pq*
representa a una matriz de 3x3.

Puede verificarse que la matriz de
inercia (cuyos elementos son numeros
reales) es simétrica, Mqo*™ = Mg lo que
tiene como consecuancia que: 1) Sus
valores propios sean reales, ii) Dos
gjes principales con momentos de
inercia diferentes son perpendiculares
entre si, ii1) Posee por lo menos tres
vectores propios linealmente
independientes; con ellos se puede
construir una base del espacio R?,
donde se describe el SF.

Sea u un vector unitario, (Q, u)
la recta orientada, determinada por el
punto Q y el vector u ; entonces se
define el momento de inercia , I(u),
del SF con respecto al eje (Q, u),
como el valor medio I(u) =u"Mq u
= (u, Mq u). Por otra parte, diremos
que (Q, u) es un eje principal de
inercia del SF si
Mou=XAu dedonde A = I(u)
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energia correspondientes a los men-
cionados estados propios:

Eg) = (@, Hp) = 2 a*ax (¢;, Hox)
= Y| ax|? Ex

donde |g;|? es la probabilidad de

que (por efecto de una medicion) el

estado @ se transforme (bruscamente)

en el estado propio ¢; .

En el caso de un valor propio
degenerado, digamos, r-degenerado,
los correspondientes estados propios
constituyen un subespacio vectorial de
dimensién r. En dicho subespacio
todos los estados son equivalentes, lo
cual refleja cierta simetria del campo
potencial que actia en el sistema. Esta
simetria no es necesariamente ‘visible’.

Con el objeto de analizar las
caracteristicas de la simetria se puede
perturbar el SF, adicionando al
observable en cuestion, digamos al
operador H , un ‘pequeifio’ sumando,
eW, donde W es un operador de la
misma naturaleza que H , y € es un
parametro adecuadamente pequefio.
La perturbacion del operador

H— H+e&W
producira que tanto la funcion de
estado como el valor propio sean
modificados

o — [@ +ed(e)]/ llo + ede)l
E— E + ¢'F(¢)

Si u no es vector propio de la matriz,
entonces lo podemos expresar como
una combinacion lineal de los
vectores propios, u = 2 Ox h x con
Mg ng = Ix ng de donde obtenemos:

I(u) = Xk ox® Ik

donde ay? seria la probabilidad de que
al hacer rotar el SF alrededor del eje
(Q, u), aquél pase a rotar alrededor del

eje (Q: nk)'

En el caso de que un valor propio
sea 2-degenerado, entonces todas las
rectas de cierto plano que pasan por
Q seran ejes principales de inercia.
Por ejemplo, cuando Q se encuentra
sobre el eje de un cilindro homo-
géneo, el plano que pasa por Q y es
perpendicular a dicho eje resulta ser
un plano propio (en el sentido de que
cualquier recta contenida en €l y que
pasa por Q es un eje principal). Si el
valor propio es 3-degenerado, como €s
el caso de una esfera homogénea con
centro en Q, entonces toda recta del
espacio, que pase por Q, sera eje
principal. Si se perturba el SF,
afladiendo una pequefia masa p (que
podria ser puntual) en alguna
posicién, la matriz de inercia se
modificara:

Mqo— Mg + W
Produciendo la modicacion de la

direcciéon del eje principal y el
correspondiente valor propio:

u——> [u+ ev(e)]/ |lu+ ev(e)
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Por otra parte, si el valor propio E
es degenerado (lo que es fruto de
determinada simetria del operador H),
dicha degeneracion podra ser
levantada — quizas parcialmente — so6lo
en el caso de que el operador W no
posea la misma simetria que H.

I(u) — I(u) + &G(g)
donde debe tenerse presente que los
vectores de direccion de los ejes
deben ser unitarios.

Por otra parte, si el momento de
inercia es degenerado, dicha degene-
racion podra ser levantada sélo si la
matriz W no tiene la misma simetria
mecanica que la matriz de inercia.

propio degenerado.

Cuando existe cierta simetria, por ejemplo cilindrica, entonces existe un subespacio
(en el caso de la matriz de inercia se trata de un plano), tal que todos sus estados
o vectores del mismo son vectores propios del operador, correspondientes al valor

Sean f y g funciones norma-
lizadas de un espacio de Hilbert; sea
Q un operador que actua en dicho
espacio; Z(f) = (f, Qf) el valor medio
del operador con respecto a la funcion
f; fg la funcién normalizada que se
obtiene cuando f es incrementada h
(=0) unidades en la direccion g, es
decir, f; = (f + hg)/||f + hgl| . Sean por
otra parte

Af=fg—f9 AZ:Z(&)—Z(f)

Sean f y g vectores unitarios de
R3; sea Q una matriz que actia en
dicho espacio; Z(f) = {f, Qf) el valor
medio de la matriz con respecto al
vectro f; fg un vector unitario que
se obtiene cuando f es incrementada
h (=0) unidades en la direccion del
vector g, es decir,

Jg = (F+ hg)/lIf + hgfl
Sean, por otra parte,

Af=tfs—f, AZZ(fg)Z(/)
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Teorema 1.

Af=hig—- (g fH+ ¢ )+ 0m)

AZ(f) = h[(Qf — zf , &) + (8, Qf — Z:f)] + O(h?)

Teorema 2.

Si f'es una funcion propia de Q, es decir, Qf = Af, lo cual implica

que A = Z(f) , entonces AZ(f) = O(h?). En palabras: entonces
al modificar f, en cualquier direccion g , el valor medio Z(f) (o
el momento de inercia) sélo es modificado en segundo orden.
Reciprocamente: Si al modificar la funcién f en cualquier
direccion g, el valor medio Z(f) sélo resulta modificado en
segundo orden, entonces f'es una funcion propia del operador Q.
Es decir, las funciones propias de un operador (o los ejes
principales de inercia) poseen valores propios estacionarios.

Teorema 3. Solamente el estado (o los
estados, en el caso de degeneracion)
propio correspondiente al valor propio
minimo es estable.

Por ello el sistema no puede
mantenerse mucho tiempo en un
estado excitado, y tiende a volver
rapidamente a su estado de minimo
valor propio. En el caso de la energia,
el valor propio corresponde al estado
fundamental.

BIBLIOGRAFIA:

Teorema 3. Solamente los ejes princi-
pales de inercia correspondientes a los
momentos de inercia minimo y maxi-
mo son estables. Esto se evidencia en
el movimiento de rotacion en ausencia
de un torque externo:

Si la rotacion se realiza alrededor de
un eje vecino a uno de los estables,
dicho eje permanece vecino al eje
principal (estable) correspondiente. Si
la rotacion se realiza alrededor de un
eje alejado de los ejes principales
estables, entonces tal eje de rotacion
cambiara su orientacion, acercandose
y alejandose, repetidas veces, con
respecto a los ejes estables

Saletan-Cromer, Theoretical Mechanics, Wiley, 1971

HGValqui, Apuntes de Mecanica, 1999

HGValqui, Apuntes de Mecanica Cuantica, 2000
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Analisis de lo que le
ocurriria a la Tierra si
estuviese en la orbita de

Venus

Maria Isela Zevallos Herencia*

RESUMEN

Durante mucho tiempo se pensé que Venus y la Tierra eran planetas mellizos.
La similitud en tamario, gravedad y densidad hacian suponer la existencia de
caracteristicas comunes que superaba la simple semejanza.

Masa 5974*10% kg 14.869*10% kg
Diametro 12756 km 12104 km
Periodo orbital 365,256 dias 224,70 dias
Periodo de rotacion (23,9345 horas | 243,01dias (retrogrado)

Sin embargo, como vamos a apreciar seguidamente, dicha situacion no es tal.
Este anadlisis ayuda a entender lo delicado que pueden ser los complejos (por
depender de varias variables) equilibrios climaticos.

*Grupo Astronomla, Facultad de Ciencias, UNI.
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Introduccion

CARACTERISTICAS DEL PLANETA VENUS

Venus, conocido como la estrella de la mafiana o como estrella del atardecer,
es 16 veces mas brillante que la estrella mas brillante que vemos (Sirio), pero menos
brillante que el Sol y la Luna.

Esto debido a que su distancia media al Sol es de 1,082 *108 km., siendo
su periodo de rotacion alrededor de su eje se 224,70 dias. Su drbita es casi circular
ya que tiene una excentricidad de 0,0068 (la excentricidad cero corresponde a una
orbita circular). Su masa, es de 4,869*10%4 kg ; que equivale a 0,815 la masa de
la Tierra; siendo su diametro de 12104 km.

Presenta un periodo de rotacion retrogrado y muy lento (243,01 dias). Sin
embargo, sus periodos de rotacién y traslacion estdn sincronizados de tal manera
que,como la Luna,presenta la misma cara hacia la Tierra cuando ambos estan en
su maxima aproximacion.Tiene una presion atmosférica de 90 atmosferas terrestres.
Su atmdsfera estd compuesta por dioxido de carbono (96%) y nitrégeno (4%).
Presenta muchas capas de nubes de kilometros de espesor que estan formadas por
acido sufurico, las cuales oscurecen completamente la superficie; esta atmosfera tan
densa produce un efecto invernadero que eleva la temperatura de la superficie hasta
740 °K. Tanto es asi que, a pesar de estar Mercurio dos veces mds cerca al Sol que

!
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Fig. 1. En Venus la temperatura varia con respecto a la altitud, en la superficie alcanza hasta
750 °K, mientras que a mayores alturas ésta decrece hasta temperaturas de 170 °K.
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Fig. 2. La presion también varia respecto a la altura, cerca de la superficie la presion
alcanza 90 atm.

Venus, la temperatura de éste es mucho mayor.En la superficie hay vientos que son
muy lentos, del orden de unos pocos kilémetros por hora; pero los vientos en lo alto
de las nubes son muy fuertes, de aproximadamente 350 kilémetros por hora.Venus
aparece actualmente completamente seco, pero probablemente hace muchos afios
haya tenido agua la cual ya se ha evaporado.La superficie de Venus estd compuesta
en su mayor parte de superficies, con pequeiios relieves. Hay algunas depresiones
denominadas Atalanta Planitia, Guinevere Planitia, Lavinia Planitia; dos tierras altas
que sobresalen, las cuales se denominan Ishtar Terra y Aphrodite Terra, asi como
crateres. De la cantidad de crateres que han impactado sobre un planeta desde los
comienzos del sistema solar se puede calcular la edad de la superficie de un planeta,
con este criterio la edad media de la superficie de Venus se estima en 400 millones
de aiios, dos veces la edad de la Tierra.

LA TIERRA: CARACTERISTICAS

A diferencia de Venus, la Tierra, tiene una distancia promedio al sol de 1UA
(1,496 *108 km), un periodo de rotacién de 23,93 horas y un periodo de traslacion
de 365,256 dias. Su masa es de 5,98*10%* Kg; su didmetro de 12,756 km y su
excentricidad es de 0,017. Su eje de rotacion esta inclinado 23,45°; lo que permite
que se produzcan las estaciones.Su atmosfera esta compuesta en su mayor parte por
nitrégeno (aprox. 78,1%), oxigeno (20,9%), CO, (0,03%), H,O y otros gases. La
gran cantidad de oxigeno se debe al proceso de la fotosintesis producido por las
plantas, mediante el cual el CO; es convertido en oxigeno.
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La Tierra esta dividida en seis zonas

1.La magnetdsfera, es la region donde se extiende el campo magnético desde
los 100 000 km hasta 200 km.

2.La atmosfera que esta dividida en 4 zonas

o La troposfera, se extiende desde la superficie hasta los 12 k.s.n.m., su tempe-
ratura decrece con respecto a la altura, llegando hasta -60 °C a 11 k.s.n.m.
Las variaciones de temperaturas, debido al calentamiento solar, en esta
zona causan corrientes de conveccion que se mueven de arriba hacia abajo.
En esta zona se forman las nubes.

e La estratosfera, se extiende desde los 12 hasta los 50 k.s.n.m. En estd zona
esta presente el ozono que absorbe la radiacidn ultravioleta del sol,
provocando el calentamiento de la estratdsfera. En esta zona no hay
corrientes de conveccion.

e [a mesosfera, se extiende desde los 50 hasta los 80 k.s.n.m. en este ultimo
punto su temperatura desciende hasta -75 °C. En esta zona se encuentran
cantidades menores de ozono, de modo que no hay absorcion de radiacion
UV en la mesosfera.

e La termosfera, la temperatura aumenta con respecto a la altura, es muy caliente
debido a que los atomos de oxigeno y nitrégeno absorben radiacion UV.

150}
- "’
c“'/—-
4
Termosfera
g Mesostera
< -— e pee oo - — e aw— - e -
Estratosfera
_Troposfera
o 1 t X + ¢ t gty -
80 60 -40 20 0 20 40 60 80 100

Temperatura (°C)

Fig. 3. En el gridfico vemos que en la troposfera y en la mesosfera la temperatura disminuye
respecto a la altitud, mientras que en la estratosfera y termosfera la temperatura aumenta
respecto a la altitud. Estas variaciones son debido a las diferentes maneras en que la
luz del Sol actua con los atomos e iones de la atmosfera.
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3. La hidrésfera, el 71% de la superficie de la Tierra esta ocupada por agua
liquida y agua congelada.

4. La corteza, es la superficie solida, tiene un grosor aproximado de 30 km,
estd conformada por rocas.

5. El manto, se extiende hasta una profundidad de 2900 km ocupa
aproximadamente los 2/3 de la masa total del planeta, consiste de roca
solida y magma, ademads contiene minerales ricos en hierro y magnesio.

6. El nucleo, compuesto principalmente de fierro, niquel, conformado por
el nucleo superior hasta los 5200 km, su temperatura es de 4600 °K y tiene
una presion de 1,3 millones de bar; es liquido; el nucleo inferior, que es
solido con una presion aprox de 3,2 millones de bar.

Cambios que experimentaria la Tierra en la orbita de Venus

Luego de repasar algunas caracteristicas de Venus y la Tierra, veamos que
sucederia si la Tierra estuviera en la orbita de Venus.

Si trasladdramos la Tierra a la 6rbita de Venus, el periodo de rotacion de la
Tierra alrededor del Sol, como es de esperarse; ya no duraria 365,26 dias.

Segun la tercera ley de Kepler el cuadrado de los periodos orbital de un planeta
alrededor del Sol es propocional al cubo de la distancia promedio:
T? a d3,

donde las unidades del T son afios y las unidades de la distancia media son UA.
Newton demostré que la tercera ley de Kepler se podia desarrollar de su ley de
gravitacion, resultando de la forma:

2
T2= ar d3
G(Mr+Mg)

(1)

Siendo

M; (masa del Sol) = 1,99*10% kg

M; (masa de la Tierra) = 5,98*10* kg

G (constante universal) = 6,67*10 "'! N*m?%/kg?.
d = distancia media entre la Tierra y el Sol.
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Reemplazando los valores en (1) tenemos:
3 47:2
G(598*10%* +1,99*1030)
T = 365,5 dias.

T4 (1,5%108 )3

Si d es la distancia entre la Tierra y el Sol, en la érbita de Venus d = 1,082*108
km, reemplazando en (1).

T3 _ 47t2
G(598*10%* +199%10%7 )
T = 224,65 dias.

(1,082%108 )

Por lo tanto el periodo orbital de la Tierra en la 6rbita de Venus seria
aproximadamente igual al periodo orbital actual de Venus alrededor del Sol; el cual
dura 224,7 dias.

La fuerza de atraccion gravitatoria entre la Tierra y el Sol también variara,
sabemos que esta es:

GMM
F= 7 )

Siendo

M; (masa del Sol) = 1,99*10°° kg

M; (masa de la Tierra) = 5,98*10% kg

G(constante universal) = 6,67*10°!! N*m?%kg 2.

d (dist. media entre la Tierra y el Sol, en la érbita de Venus) =1,082*10® km.

Reemplazando los valores en la ecuacion (2), tenemos

_ G(1,99*10%° )(598*10%*)

F
(1,082%10% )

F = 6,78*10? N

que es mayor que el valor de la fuerza de atraccién gravitacional de 3,54*102 N
a una distancia de 1,5%10% km entre la Tierra y el Sol.
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Otro cambio se daria en la temperatura de la Tierra. La cantidad existente
de energia recibida queda determinada por la constante solar Cs, que estd definida
como la radiacion total recibida en la Tierra, en la unidad de tiempo, por un area
de 1 cm? ubicada perpendicularmente a los rayos solares.

(3

Para la Tierra en su actual posicion tenemos

Cs = 1,37 * 10° ergios/cm? seg.

Ademas la energia total estd determinada por
E; = Cs*A
E; = Cs*4n r2
r = distancia de la Tierra al Sol
E=(1,37*10° ergios/cm? seg) * 4n (1,5%10!3cm).
E; = 3,88*1033 ergios/seg.

y la energia que sale del Sol es

E, = . 63*10'0 ergios/cm? seg

2
4nR 0

Ei = 6,3*10'° ergios/seg*4nRo?
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Como E; = Cs*4nd?, siendo d la distancia media entre la Tierra y el Sol = 1,1*10'3
cm, entonces
E; _388* 1013ergios / seg

Cs = =
an(11%1013 )2 4az(11*1083 cm)?

Cs = 2,55*10° ergios/cm? seg.

Por lo tanto en la drbita de Venus la cantidad de energia en ergios que recibiria
la Tierra por cm?.seg seria de 2,55; casi el doble de la que recibe la Tierra en su
orbita. Como es de suponerse, al estar mas cerca al Sol la temperatura en la superficie
de la Tierra se veria incrementada.

Debido a este incremento el hielo de los polos se fundird al mismo tiempo
que los océanos. Al evaporarse, formaran una capa mas gruesa de nubes de vapor
de agua, provocando el aumento de la presion atmosférica.

Asi, la temperatura de la superficie aumentara de tal manera que la cantidad
de energia irradiada por la superficie del planeta esté de acuerdo a la ley de Wien,
que establece que “la longitud de onda de méxima emision, es inversamente
proporcional a la temperatura en Kelvin”. De esta manera,

Amax T =0,0029
0,0029
Amex = _IT_
" para una temperatura muy alta, como por ejemplo 7 = 700 K
P 0,0029
max 700

A T=414%100m,

que estd dentro del rango de la radiacién infrarroja. Por lo tanto la superficie del
planeta (que estd a una temperatura menor que 700 K) emitira radiacion infrarroja,
la cual, debido a la capa de vapor de agua que se estd formando, serd parcialmente
bloqueada, escapando una parte al espacio, mientras que la otra parte quedara
atrapada incrementado a su vez la temperatura. Producido este efecto, llamado efecto
invernadero intenso, los océanos continuaran evaporandose, esto incrementara el
vapor de agua en la superficie y asi el ciclo se repetird hasta que la temperatura
y la presion atmosférica sea tan alta que toda el agua se convierta en vapor. Para
ese momento los seres humanos, los animales y las plantas habran desaparecido,
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aumentando sin limite el diéxido de carbono en la atmosfera ya que éstas ultimas,
mediante la fotosintesis transformaban el CO, en oxigeno. Por otro lado, la gran
cantidad de dioxido de carbono contenido en las rocas y disuelto en los océanos
se habra liberado, permaneciendo en la atmdsfera y absorviendo la radiacién UV
del Sol. Esto debido a que el incremento del CO,, provocara la desaparicion del ozono

de la atmosfera que es el que evita que la radiacion UV del Sol llegue a la superficie
terrestre.

El vapor de agua se elevard a una gran altitud, alli la radiacion ultravioleta
del Sol - que tiene una energia tan alta que es capaz de romper las moléculas en
sus componentes -, rompera las moléculas de vapor de agua en hidrogeno y oxigeno.
De acuerdo a la teoria cinética de los gases la energia cinética (Ex) promedio de
un gas o molécula es:

siendo
K la constante de Boltzman (1,38*1023 J/K).
A altas temperaturas la energia cinética sera mayor por lo tanto los atomos

o moléculas se moveran mas rapidamente, provocando el choque entre moléculas,
separandose en sus atomos constituyentes.

La energia cinética estd dado por

] « 1 2
Ek"",Z — m;v;
N3 2

2

donde N es el nimero de particulas, m; y vi la masa y velocidad de la particula
i respectivamente. Si las particulas tienen la misma masa, entonces

1 2
Ey =Em Vims

Donde Vms €s la velocidad media cuadratica.

Por lo tanto la energia cinética media de los atomos de un gas es

- 1 2 3
Er =—mV = — KT
k > rms 2

v, =>KT 3)
m
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La velocidad de escape (velocidad minima que se debe tener un cuerpo para escapar

de la Tierra) esta dada por
,2GM
V, = T (4)

Gf(constante universal) = 6,67*10°'! N*m?/kg2.
M es la masa de la Tierra = 5,98*10% kg
R es el radio de la Tierra = 6378 km.

Reemplazando los valores en la ecuacion (4) tenemos, que la velocidad de
escape es de aproximadamente 11,2 km/seg.

Suponiendo que la temperatura en la Tierra ha llegado hasta 700 K,
calculemos el valor de la velocidad media cuadratica, segun (3), para el oxigeno e
hidrégeno es:

Para el oxigeno

Masa de los dtomos de oxigeno es 2,66*102¢ Kg.
En (3)

o= > 226
2,66*10" kg

Vims =104 Km/ seg.

(138*1072 J /K )(700K )

Para el hidrégeno

Masa de los atomos de hidrégeno es 1,69*102! Kg.
En (3),

Vims =2,92Km/ seg.

Un planeta puede retener un gas si la velocidad de escape es por lo menos
6 veces mayor que la velocidad media cuadratica de las moléculas del gas. Para el
oxigeno 6*1,04 Km/s = 6,24 km que es menor que 11,2 Km/s por lo tanto el oxigeno
se quedara en la atmosfera. En el caso del hidrégeno 6*2,92 Km/s = 17,52 Km/s
que es mayor que 11,2 kmy/s, por lo tanto el hidrégeno se escapara hacia el espacio.
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El oxigeno que permanece se combinara con el diéxido de carbono y el

carbono que ha sido liberado de los distintos tipos de roca que formaban la superficie
de la Tierra.

Rayos
solares Rayos solares

reflejados Radiacién

l/ infraroja

T NS S o~ e~y S
Nubes

N N N AN e

S S—— —— w— " w— w— —  ——m  o— ——

La superficie
emite radiacion Radiacién
infraroja. infraroja

reflejada

Rayos solares
calientan la
superficie

La Tierra por lo tanto se convertiria en un lugar, sin vida, seco, con una

atmosfera llena de CO; y con una temperatura muy alta. Es decir la Tierra se parecera
a Venus.

Conclusiones

Al trasladar a la Tierra a la érbita de Venus, la temperatura de su superficie
se incrementara; y debido que la Tierra esta conformada en su mayor parte por agua
en forma liquida y hielo, ésta se evaporara hasta producir una gran cantidad de vapor
de agua que bloqueara la salida de gran parte de la radiacion infrarroja irradiada
por la superficie del planeta, produciéndose un aumento de temperatura y la
materializacion de un efecto invernadero intenso. Como consecuencia de éste, la capa
de ozono que absorbia la radiacion UV se destruira, provocando un aumento
desmesurado de la temperatura.
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El ciclo se repite hasta que la atmosfera se vuelva muy caliente, llena de vapor

de agua. A niveles altos la radiacion ultravioleta proveniente del Sol rompe las
moléculas de vapor de agua en sus componentes atémicos, por lo que el hidrogeno
escapara hacia el espacio mientras que el oxigeno permanecera en la atmosfera donde,
al combinarse con la gran cantidad de CO, disuelto en las rocas y en los océanos,
convertird a la Tierra en un lugar seco con una atmésfera llena de CO,. Es decir,
en un planeta sin vida.
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Adaptabilidad de mallados
por similitud al
comportamiento de un
fluido compresible

">y
Irla Mantilla Nunhez*

RESUMEN

En este trabajo se presenta el planteamiento y desarrollo de un método de
adaptabilidad de mallas, que consiste en la fijacion y redistribucion del
numero de nodos y elementos de una malla inicial. El principio se basa en
asemejar los nodos del mallado inicial como las particulas de un fluido
localmente compresible e irrotacional. Asumiendo que tal compresibilidad es
proporcional a la distribucion promedio del error en cada elemento, se
consigue que el fluido sea tratado como globalmente incompresible; esto
conduce a la resolucion numérica de un problema de contorno eliptico lineal
de tipo Neumann. Para la existencia y unicidad de la solucion de este
problema se aplica un método de penalizacion, y se resuelve mediante el
Método de Elementos Finitos. A partir de esta solucion, se localiza las
coordenadas de los nodos de la malla generada y el desplazamiento de cada
nodo. La optimizacion de la malla resultante se realiza mediante la definicion
de un indicador de distribucion del error. Los resultados obtenidos
demuestran que este método es eficaz tanto en el tiempo computacional como
en la calidad de aproximacion de soluciones de problemas de contorno.

*Facultad de Ciencias, Universidad Nacional de Ingenieria, Lima-Peru.
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ABSTRACT

In this work we present the proposal and development of a method of
adaptability of in meshes, that it consists the fixation and redistribution of the
number of nodes and elements of an initial mesh. The principle is based on
liken the nodes of the initial mesh like the particles of a fluid locally
compressible and irrotacional. Assuming that such compressibility is
proportional to the average distribution of the error in each element, it is
gotten that the fluid is studied like incompressible globally; this leads to the
numeric resolution of a problem of elliptic lineal contour of Neumann type.
For the existence and uniqueness of the solution of this problem is applied a
method of Penalization, and it is solved by means of the Method of Finite
Elements. Starting from this solution, one locates the coordinates of the nodes
of the generated mesh and the displacement of each node. The optimization of
the resulting mesh is carried out by means of the definition of an indicator of
distribution of the error. The obtained results demonstrate that this method is
effective not only in the computational time but also in the quality of

approach of solutions of problems with boundary values.

Introduccion

En la resolucion de problemas de contorno mediante elementos finitos,
diferencias finitas o volumenes finitos, el tipo de malla que se elija para la
discretizacion del problema, influye en el tiempo de calculo y en la calidad de la
solucion a obtener, sobre todo cuando se requiere simular el comportamiento de
variables que presentan grandes variaciones. Si se utilizan mallas con elementos de
geometria simple, el mallado sufre deformaciones y partes de éste se degeneran,
perdiéndose informacion cerca de las zonas mas inestables. En este caso, existen
dos alternativas: el refinamiento de la malla o la adaptabilidad de mallado.

El refinamiento de la malla consiste en incrementar el nimero de elementos
de ésta; como consecuencia de ello se produce el aumento de grados de libertad,
lo cual conduce a la resolucion de grandes sistemas de ecuaciones algebraicas. Este
proceso, si bien mejora la precision de la solucion al utilizar métodos iterativos
especiales, no es Optimo en cuanto al tiempo de calculo.

La adaptabilidad de malla, consiste en optimizar el numero de elementos de
la malla inicial con la finalidad de conservar la precision de la solucion aproximada,
para ello se requiere buscar una buena técnica que minimice el tiempo de calculo.

e Adaptabilidad con elementos finitos en movimiento (Moving mesh finite
elements o multigrid) [7].
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e Adaptabilidad consistente en la redistribucion de los elementos de la malla
inicial fijando el numero de nodos [3,8].

Objetivos
Los objetivos del presente trabajo son:

e Que el mallado adaptado conserve el nimero de nodos y elementos del
mallado inicial, asi como su admisibilidad en el dominio de célculo.

e Mejorar la distribucion del error en sus elementos en un menor tiempo
computacional.

Planteamiento del problema

Sea Q = R” un conjunto acotado de frontera regular 5Q =T y de conjunto

clausura Q =QUT sobre el que se aproxima la solucién de un problema de contorno
mediante el método de elementos finitos. Supongamos Mx es el mallado inicial sobre

Q el cual esta construido por elementos finitos de la forma (X, P;, N) donde K
es el tridngulo de lados a; < by < ¢; , P, es el polinomio lineal de aproximacion
y N es la base nodal con nodos los vértices N; de K.

1 3
El area A; de cada tridngulo pertenece al intervalo I = [z .h/%. sen0y, {-— .h;% j| y

[4] siendo %k el lado de mayor longitud y 6; el angulo mas pequeiio del tridngulo

K, tal que min 0 =a donde ae (O,l).
keMx

Dada la funcién w:Q — R, como un estimador de error definido sobre

x— w(x)
Mx, siendo weL?(Q).

La técnica planteada, consiste en asumir que los nodos del mallado inicial
se comportan aproximadamente como las particulas de un fluido localmente
compresible e irrotacional. Entonces, para la formulacidn, se considera que, dado
un @ e (0,1) (tabla 1), las coordenadas de los nodos del mallado adaptado estaran
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Tabla 1
Resultados de calidad de malla.

N N
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dados por Y;=X; + y(O) . siendo y(6)> 0 un parametro homogéneo semejante
en dlmensmn a un 1ncremento de tiempo, X; nodo de la malla inicial (Fig. 1) y %;
la velocidad del fluido en cada nodo.

En un medio continuo, se asume que Y es una funcién biyectiva, continua
y diferenciable, denotada por Y (x)= X+y.u (x) VxeQ, [6] siendo u(x) la

velocidad media del fluido. En virtud de que we L*(Q) suponiendo que el fluido

es localmente compresible y proporcional a la desviacion sobre el error medio, se
plantea el siguiente problema: hallar una funcién u en el espacio

H(div,Q)={ve[L*(Q)]*/divve L*(Q)} [5] tal que:

—divu(x)=f(x) en Q
(P){ un=0 sobre 0Q

donde:

% = 1
f(x)=w(x)-w, W—W IQ w(x)dx, VxeQ

n, es el vector normal unitario exterior a Qen su frontera oQ) .
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Fig.] Malla inicial.

Resolucion numérica

Teniendo en cuenta que we LZ(Q ) ¥ que el flujo es irrotacional, es decir

roty =0 entonces el teorema de descomposicion vectorial de [LZ (_Q )]2 [4] permite

demostrar la existencia y unicidad de la funcién potencial de flujo ¢ €¢ H 1( Q)

(Fig. 2) tal que u = V¢. Entonces el problema (P) se reduce a hallar ¢, que
satisface:

-Ap=f en Q
(Fo ){(V(p).n=0 sobre 0Q

La transformacion Y(x) se considera admisible en Q y de la positividad de

la ecuaciéon D[y (6 Joup(x)]=1+y(6 )divup(x)+v(6)> det(%uh(x)); VxeQy,
garantiza que las conectividades de Mx se conservan en My; es decir, que no se
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degeneren los elementos y no exista penetrabilidad entre ellos. La funcién aproximada

up es la solucién finita en cada subdominio de Q4 .De la condicién de contorno
tipo Neumann homogénea, indica que los nodos de la frontera permanecen en la
misma frontera.

.20 1.0 0.0 1.0 2.0

Fig. 2 Potencial de flujo con W.

Sea el espacio
V(Q)={yeH'(Q): [x(x)w(x)dx=0; xe}(Q); x#0en Q},
Q

el cual se puede ver que es un espacio de Hilbert [6]. En estas condiciones, es posible
plantear el siguiente problema continuo en el espacio V(Q)c H'(Q).

Dadoun 6€(01) y weL?Q) hallar un Yy € H(div;Q) que satisface
Y =x+7y(0 )u, V xeQtalque:
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* ue€ H(div;Q)y viene dado por donde u = Py(giy.0 ),donde p eV (Q).

 y(0)e R,donde: y(0)= Inf G(6)siendo G(6)un conjunto no vacio,
S€R,

donde G(0)=1{5 eR, :D[5,up]=6, VxeQ)

FORMULACION VARIACIONAL

Como welL?(Q) entonces f e [2(Q)); por esta razén es posible formular
(Q2) fel(Q)

una aproximacion débil del problema continuo (7, ) al multiplicar por una funcién
veH 1 (Q) atoda la ecuacién. Por la Identidad de Green para funciones escalares

y teniendo en cuenta la condicién de contorno de Neumann homogénea(Fy), se
reduce a la ecuacion integral

[VoVydx= [ fyax vy eH'(Q)
Q Q

Suponiendo que y es solucidon de esta ecuacidon integral, entonces
 + ¢ también es solucion, siendo ¢ una constante. En caso particular, tomando v =1

resulta que [ f(x)dx = 0. Ello indica que el fluido es globalmente incompresible
Q

[5,6]. Este resultado viene a ser la condicién de compatibilidad del problema débil;
con lo que garantiza la existencia de solucién del problema siguiente:

{Hallar Q € H! (QQ)
a(oy)=1(y)

Pero el primer miembro de la ecuacién es una forma bilineal no coerciva en
V() por lo que no garantiza la unicidad de solucién.

Por la forma de la ecuacién integral se puede observar que para cualquier
valor de ¢, ¥ +c¢ es solucion, por tanto existen infinitas soluciones para este
problema. Entonces, para lograr la unicidad de la solucién se aplica la formulacién
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de penalizacion, que consiste en elegir un parametro ¢ € (0,1 y hallar ¢, que
satisface:

(P )—A(p+e(o=f en Qg
P "\(Vp)n=0 sobre 6Q

Ii» - =0
inlo-ocl,

En el espacio V(Q2), la forma bilineal, definida por el producto escalar:

a(pew)= [Vo Vy di+s [py dx,
Q Q

induce a la norma de V() y en el espacio dual V'(2)el producto escalar

I(y)=[fy dx, ¥V yeV(Q),
Q

es una forma lineal. Entonces para ¢ y v :e V(Q), por el teorema de
Representacion de Risz se tiene el siguiente problema variacional penalizado:

(PV){‘pS EHI(Q)
a(pg.y)=1l(y), Yy eV(Q)

Para y =1 para ¢ = ¢, , se deduce

&[@g dx=[fdx, Vee(0l] enonces [, dr=0.
Q Q Q

Mediante la desiguaidad de Poincaré, el problema penalizado, (PV)
permite encontrar las constantes positivas de continuidad C y K, tales que:

o la(oe.w)sClog| vl o Vos v e H (Q)

o [w)<Klflyalvl g
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Como Q es acotado y suficientemente regular, la forma bilineal serd acotada
en V(Q)x V(). La forma lineal / es acotada y continua sobre el dual de V(Q)

por la continuidad se tiene que /(c) = 0, Vc e R . Entonces, mediante el teorema

172
de Poincaré generalizado, la norma " (p€|| = [:tpgllzg +(l( o, ))2} , €s equivalente

a la norma ||||IQ Vo .eV(Q).

Con esta norma se verifica entonces que, 35>0, a(y,y)2 ﬂ"WHVz ,

V ¥ e V() probando asi que la forma bilineal es V-eliptica o que satisface la

propiedad de coercividad, lo que permite aplicar el teorema de existencia y unicidad
de Lax Milgram.

En adelante, se denotara por simplicidad ¢ = ¢, . Luego, por el método de
Galerkin es posible formular una aproximacion del problema (PV) esto es:

©p eVh(Q)

(PVh){ _
a(op.w)=l(y)Vy eV,(Q)

siendo V,(Q)= {(peCO(Q): ‘PlK es lineal continua a trozos } 'y h es la
longitud del lado mayor del elemento K del mallado Mx.

Este problema satisface todas las condiciones del teorema de Lax Milgram,
el cual garantiza la existencia y unicidad de la solucion.

Luego la formulacion integral de la ecuacion u = V¢ se obtiene también
multiplicando por una funcion de prueba v a toda la ecuacion, que integrando resulta:

[(ujvdx= [Vovdr Vve [Lz(Q)]z
Q Q

Considerardo un mellado M sobre Q y el espacio aproximador
V()< V(Q2), suponiendo una aproximacion de la funcién ¢ de la forma

1 3
Pr(x.y)=20; X¥(x, ),

i=l
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siendo ¢; el valor de ¢ en cada nodo y que verifique:
a(Qh Xj)=(f.X;)
donde X ,k (x,¥) son las funciones de interpolacion de Lagrange lineales que

constituyen la base del espacio aproximador ¥5,(Q2), la cual determina la dimension
finita de éste.

El problema discreto conduce a la resolucion del sistema de ecuaciones lineales
A& = B donde A es una matriz simétrica y definida positiva, & es el vector de las

de las funciones de base del espacio aproximador, 7 es el orden de la matriz del
sistema.

El nimero de valores ¢; para cada nodo i, llamados grados de libertad, son

los que definen el orden del sistema de ecuaciones que hay que resolver, para hallar
la aproximacion de ¢.

AR = = o om m = o w e s m o= = =
S
155‘ ¢ R A I A D P D A S '

g * VR A A A A A A A I
WE ' - s s s s s s s
p ! T = . A A I A SV Y A
0‘5:_ T T NN AN S A 3 W
[ / P - ’ s /s 7S S 7 / i
0.0:— VR A S N I e & 2 o A
A N G A N A OV I
Y- A A A S 5 e e a3
E A R R S - - s
ADFr s 727 207 0 0y L,
T D A A A A B D
R R I A R A A S S v
- - - . A A - - < N '
-QD: PR S T S DU S S SR S UNNY TP SR SR S DU S SR S S
-2.0 -1.0 0.0 1.0 20

Fig. 3 Campo de velocidades con W .
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Los coeficientes de la matriz A=(a ;) y del vector B =(by,by,....,b, ) estan
representados por:

ajj = ZaK(xi.xj) tal que aK(Xi’Xj)-_'I[VXiVXj'*‘g(Xin)]dx
KeMx K
. K,_ K, .
b= 2 (fk.xj) tal que (fkx. % )—J‘fk'Xi dx; VxekK
KeMx %

Las propiedades de simetria y positividad de la matriz global de coeficientes

del sistema, la que a su vez es dispersa con muchos ceros, permiten su resolucion
mediante el método de Cholesky.

Una vez encontrada la funcién de aproximacién ¢ 4, se procede a encontrar

su gradiente. Para ésta operacion se utiliza las mismas funciones de forma X; usadas

N
en el proceso de busqueda para ¢ ;. Ahora; suponiendo que up(x)= Lu;xi(x)
i=l
es aproximacion de u (Fig. 3), donde:

[Vorxi  X(Von)x Ak
_ KeK(i)

_K
| xix 2. Ak
X KeK(i)

uj

Ak representa el area del elemento cuyo nodo comun es el nodo Ni respecto a los
elementos de su entorno. La ventaja de trabajar con la versién penalizada radica en

la utilizacion de las mismas funciones de forma lineal de la base de V}(Q) para
el calculo de u;.

El parametro y (6 ) > 0 se obtiene de la resolucion de la ecuacidn cuadratica
discreta p;0 2, qi6 +(1-6)=0, 6€(01) VS eG(0) para cada nodo N;, donde

pi(x)= det(euh (x)), gi(x)=div(up(x)), x € Q} los coeficientes La solucién de
cada ecuacion cuadratica genera un elemento para el conjunto , lo que garantiza que
sea diferente del vacio, con lo que se procede de forma natural ubicar las coordenadas

Yj=Xj+6u;, Vj=1..,n de los nodos de la malla adaptada My (Fig. 4).
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Resultados niumericos

Para evaluar la calidad de la malla resultante mediante el método presentado,
se asume que: sea M una malla con n elementos finitos y sea 4 : A/ — R una funcioén

de valor real que representa la desviacion del error sobre M, entonces para cada K
€ M se tiene:

d(K)=[w(x)dx—d ,xeQ, 3:1& [wix) ax),
K B i K

para la malla M, se define la funcién vectorial d(M) como:

20

15

10E

05

00F

-05

A0E

a5F

-2.0 1 L ' l A A l A A l
-20 -10 0.0 10 20

Figura. 4 Malla adaptada con W.

Referente al indicador de distribucion de error; sea M, un mallado inicial,

M, 1a malla adaptada y |||| la norma de R", se define un indicador de la distribucion
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del error sobre la malla adaptada, denotado por I||| llamado también indice de
efectividad (tabla 1), y estd representado por:

acm, )|
Tja) =1- ld(M )|

e Si I“ d| <0 ,entonces la distribucion del error, en My, no es mejor que en
Mx.

e Si I” d| = 0 , entonces la distribucion del error en My, es igual que en la
malla Mx.

e Si 1" d| € (0,1), entonces la distribucion del error en My, es mejor que en
Mx.

e Si I“ d| = 1, entonces la distribucion del error en My, es uniforme en todos
los elementos.

La implementacion de los algoritmos, se ha construido con los codigos del
lenguaje Fortran. Para el proceso de prueba se han tomado los datos de entrada
e=10"% 0€(01) y Q=(-22)x(-2,2) con una malla inicial regular de 512
elementos y un estimador de error W

/4 =ﬂVg

,g(x,y)=tanh [3(x? + y* = 1) |+ tanh[3(~x - y)]

Conclusiones

i) El valor de 8 € (0,1), influye en la calidad de la malla, regulando el

grado de adaptacion bajo el control del 4rea minima de los elementos en
la malla resultante.

i) El tiempo de calculo computacional esta asociado a la resolucién del
problema variacional discreto sobre la malla Mx.
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iii) Esta técnica frente a otras alternativas de adaptabilidad de mallas en un
problema de Mecénica de fluidos tiene mayor ventaja, puesto que se

utilizaria una sola malla para la adaptabilidad Yy a su vez para la resolucion
del problema.

iv) La interpolacién de la funcién estimador de error dada a priori, proporciona
una idea de la distribucién del error en la malla resultante.

v) El algoritmo de adaptabilidad presentado conduce a la resolucién de un
problema de contorno eliptico lineal, el cual origina un sistema de
ecuaciones lineales cuya matriz de coeficientes es simétrica y definida

positiva; por lo que, para la resolucion del sistema se usa un método directo
de un solo paso.
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