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Presentacion

Me complace hacerles llegar un niimero mds de nuestra REVCIUNI. Se
trata del quinto mimero desde que me encargaron la labor de editor a

fines de 1999.

La oportunidad es propicia para un par de reflexiones. Han sido aitos
dificiles porque en nuestra facultad no abundan los autores de articulos
cientificos. Parte de nuestras energias se fueron tratando de convencer
a nuestros colegas de la necesidad de mantener el ritmo de una
publicacién periédica semestral para nuestra REVCIUNI. Ustedes
podrdn comprobar que en estos tres aiios la mayoria de articulos han
sido escritos por nuestros jévenes pre-docentes, bachilleres e incluso
algunos de nuestros estudiantes. Lo que ocurre es que redactar un
articulo cientifico es una tarea dificilisima porque demanda dedicacion
y paciencia ademds de conocimiento del tema.

Sin embargo, nuestro esfuerzo de alguna manera ha servido para qite
nuestra revista se convierta en un medio de transmision de informacion
cientifica (a nivel divulgativo y a nivel especializado) entre los miembros
de nuestra facultad.

Espero que mi sucesor encuentre un camino mds o menos allanado, ya
que ahora son mds los miembros de nuestra facultad que reclaman —
sino como autores al menos como lectores— la aparicion del proximo
niimero de nuestra revista.

Quedo muy agradecido a todos aquellos que me brindaron su apoyo.

Armando Bernui
El editor.
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Raices v algebra de Lie
semisimples
diagramas de Dymkin

Aldo Arroyo Montero*

RESUMEN

En el presente trabajo desarrollamos la teoria a las dlgebras de Lie.
Empezamos dando el concepto de dlgebra de Lie, luego nos centramos en el
andlisis de las denominadas dlgebras de Lie semisimples, dentro de este
contexto definimos el concepto de raiz simple. Al final mostramos dos
ejemplos de dlgebras de Lie semisimples, el dlgebra su(2) y el dlgebra su(3),
las cuales son muy usadas en la Fisica, por ejemplo el dlgebra su(2) viene a
ser el dlgebra del operador del momento angular.

ABSTRACT

We study here the theory of Lie algebras. We start giving the concept of the
Lie algebras, then we analize the semisimple Lie algebras, the we also define
the concept of simple root. At the end we show two examples of semisimple
Lie algebras, the algebra su(2) and the algebra su(3). Those algebras are very
used in physics,for example the algebra su(2) is the algebra of the angular
momentum operator.

* Grupo de Fisica Tedrica, Fac. de Ciencias, UNI.
J19970390 @uni.edu.pe
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Introduccion

El primer ejemplo comiinmente usado en el estudio de las 4lgebras de Lie
viene a ser el dlgebra su(2), la base usual para esta algebra viene a ser el conjunto de
vectores {S1,52,S3} donde las relaciones de conmutacién vienen dadas por

3
[Si’sj]: ]Ezligijksk

También existe otra base de vectores para esta algebra {S=+, S3}, denominada
base esférica [1] o ciclica. La relacién que existe entre ambas bases viene dada por

Ahora, usando las relaciones de conmutacion entre los elementos de la base
{S1,52,S3}, obtenemos las relaciones de conmutacién entre los elementos de la base
esférica

[s 1 +iS, S-S, }_83

2 2

[S+,s_]=73
S, £i1S S =18
[83’Si]={:83’ 12 2;|=+ ]2 :

[S3.5,]= s,

¢Otras dlgebras poseerdn similar estructura?, es decir, si para otras dlgebras
existird una base constituida por dos tipos de vectores similares a los vectores S y
S3. Veremos que para las dlgebras de Lie denominadas semisimples existe dicha base
(denominada base de Cartan-Weyl), para dar a conocer este notable resultado
primeramente daremos el concepto de raiz y posteriormente hablaremos de raices
simples las cuales se muestran graficamente en los denominados diagramas de Dynkin.
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Algebra de Lie

Un dlgebra de Lie L={V,[.,.]} es un espacio vectorial V (real o complejo) sobre
el cual se define la operacién binaria cerrada [.,.] llamada conmutador (es decir, a
todo par x,y € V, le corresponde un elemento z € V tal que z=[x,y]). Dicha operacion
debe satisfacer condiciones de linealidad, antisimetria y la identidad de Jacobi

1) [ox+By,z)=c[x,z]+B[y.z]
2) [xyl=-[yx]
3) [x.[y.z]]+[y.[z,x])+[z[x,y]]=0

donde x, y,z € V y ¢, B son nimeros reales o complejos dependiendo del caso. Debe
recalcarse que la operacién de conmutacién para un dlgebra de Lie arbitraria es una
operacion abstracta y no necesariamente es igual al conmutador del caso de los
operadores. La dimension del dlgebra de Lie viene a ser la dimension del espacio
vectorial.

Por ejemplo, el espacio vectorial euclidiano L=R?, con la operacién [X,¥]
definida como [X;J]=XX7, es un dlgebra de Lie de dimensién 3.

Un algebra de Lie se llama abeliano o conmutativo si [x,y]=0 para cualquier x,
y € L. Sean M, N dos subconjuntos de vectores del dlgebra de Lie L, denotemos por
[M,N] todos los vectores de la forma: [x,y], x € M,y e N.

El subespacio N del dlgebra de Lie L se llama subalgebra si [N,N] c N e ideal
si [L,N] c N. Esta claro que el ideal automdticamente es un subalgebra. El {0} y toda
el dlgebra L son ideales de L, llamados ideales triviales.

Un subalgeba N que es abeliano e ideal se llama ideal abeliano.

Un algebra de Lie se llama simple, si no posee ningun ideal a parte de los
ideales triviales, y semisimple, s1 no posee ningun ideal abeliano.

Sea B={e},es,...,e5} una base del espacio vectorial L de dimensidon n, por la

linealidad del conmutador z=[x,y] y expresando los vectores X, y, z en la base B
tenemos

z = [x,y]
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A partir de esta tltima ecuacién deducimos que las componentes del vector z
vienen dadas por

) .oonoan
28 =[x, y¥ =EZC}}X‘yJ

i=1 j=1

donde
e,, zCuek

Los nimeros Cf} se llaman constantes de estructura del dlgebra de Lie L. Notese

que los valores de dichas constantes, dependen de la eleccién de la base. De los
axiomas 2) y 3) se deduce

k _ k
Slerep +cnep+cpen =0

p=l

Criterio de semisimplicidad de Cartan

En base a las constantes de estructura de un dlgebra de Lie, definamos la
siguiente cantidad simétrica (tensor métrico).
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n n m K
g =25 = 2 2CikCim-

k=Im=

Un 4lgebra de Lie es semisimple si y solo si
det(g;;) # 0.

Este criterio nos permite determinar de manera practica cuando un dlgebra de
Lie es semisimple o no.

A continuacién mostraremos, usando el criterio de Cartan que el dlgebra su(2)
es semisimple.
Semisimplicidad del algebra su(2)

Las constantes de estructura del dlgebra su(2) viene a ser el tensor antisimétrico

ieijk. Por lo que para este caso el tensor métrico viene dado por

3 3
8= 2~ EimkEjkm = > EimkEikm = 205

k,m=l k,m=}
entonces

det(gij) =8#0

por lo tanto queda mostrado que el dlgebra su(2) es semisimple.

Raices y algebras de Lie semisimples
Sea L un algebra de Lie semisimple de dimension n; Cartan demostrd que

existe un conjunto {H;} constituido por | vectores H,e L {i=1,2,...,]} linealmente
independientes tal que

[H;.H;]=0. (1)
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El nimero entero 1 se denomina rango del algebra, el rango del algebra nos
indica la méixima cantidad de vectores H; que conmutan entre si. El conjunto {H;}c L
es un subalgebra de L denominada subalgebra de Cartan.

También puede deducirse que existe un conjunto {E,} constituido por n-1
vectores Eq € L linealmente independientes tal que

[Hi,Ea]=0iEq (i€ R) (2)

Al vector | dimensional o =(c,0.,,...,0,;) #0 se le denomina vector raiz no

nulo o simplemente rapiz no nula, existen n-1 raices no nulas distintas, llamaremos
Vr al conjunto constituido por estas n-1 raices no nulas.

Los 1 vectores H; y los n-1 vectores Eq, constituyen una base del algebra L,
dicha base se denomina base de Cartan- -Weyl.

Por ejemplo la base de Cartan-Weyl del dlgebra su(2) viene a ser el conjunto
de vectores {S;,S, }, la subdlgebra de Cartan para este caso vendria a ser el conjunto

{S3}. Denotemos la base de Cartan-Weyl como {F,) (A=1,2,....1,0,B,Y,...) donde
o.B,Y,...€ VR,

F=H, (i=1,2,...] 3)
F, =E, (o€ Vp). 4)

Las constantes de estructuras del dlgebra CXB vienen dadas a partir de las
relaciones de conmutacidn entre los elementos de la base

[Fp,Fpl= ;CXBFT‘ (5)

Los fndices con letras latinas maytsculas tomaran valores 1,2,....1,a,B.y,...; los
indices con letras latinas mindsculas tomaran valores de 1,2,....1; las letras griegas se
emplearan para denotar a cualquiera de las n-1 raices no nulas.

Usando (1), (2), (3), (4), y (5) obtenemos

Cjj =0 (6)
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Cl, =0 M

cB =a;h. (8)

A partir de la identidad de Jacobi,
o Bp I+ o [Ep.H i I+ [Eq.[H.Eq =0
obtenemos que si oy Be Vg,
[ Ee By ll= (o; +B0EG.Eg]

De esta tiltima relacién se demuestra que [2]

| 1.
[EoEpl= DCLeH =X Chy oH; si a+B=0 9
i=l i=1
[Ee.Eg )= NopEasp si o+pe Vg (10)
[EQ,EB]:O sio a+P#0 y o+Pe Vi (11)

donde Ngg es un coeficiente de proporcionalidad cuyo valor vendrd dado mas adelante.
Las componentes del tensor métrico vienen definidos como

_ P ~T
gap = 2 CarCar-
T,P
Ahora obtengamos las componentes gj de dicho tensor
P ~T ' k ~T o ~T
gij = 2.CirCip = 2 2 CirCix +2, 2.CirCyq
T,P k=T a T

| ) 1 '
g; = Y YCHCE + 3 X CECh, + T X CHCT,. (12)
k=1T o k=l a P
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Usando (6), (7), y (8)»en 12 obtenemos
gij = X040
o
escribiendo esta ultima expresion en forma matricial
T
g=xoa (13)

donde la suma se extiende sobre todas las raices no nulas.

En base a las componentes gij del tensor métrico, definimos el producto escalar
en el espacio de los vectores raices I-dimensional como

(a-B)= iigﬁo‘iﬂj-

i=1j=1

Las componentes gl son definidas en base a las componentes g; del tensor
métrico, de modo tal que

L ik i
28" gy =8,
k=1
Las componentes contravariantes de los vectores raices se definen como
i _ vl
=
De este modo el producto escalar se escribe

(a-B)= iociBi = iaiBi = izl)gijaiﬂj
i=l

i=1 i=] j=1
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La longitud de una raiz o se define como (c.ct)'2.

A partir de la ecuacién (13) se deduce que la matriz {gjj} es una matriz simétrica
real definida positiva, en consecuencia dicha matriz tendra todos sus valores propios
positivos. Una matriz cuadrada real A se llama definida positiva, si

X AX>0paratodo xe R" y XTAX =0 X =0,

A continuacién mencionamos las propiedades generales de las raices

(al) Si o es una rafz no nula, entonces ko es una raiz si y solo si k==1.
Esto quiere decir que las raices no nulas siempre aparecen €n pares, se deduce
entonces que n-1 es un nimero entero par.

(a2) Si oy B son dos raices no nulas, existen dos nimeros enteros no negativospy q
tal que

B-pa.p-(p-Do,...5.B+ 0.5 +qo (14)

son las unicas raices del tipo +ko.

El conjunto de raices (14) es llamado la o cadena que contiene a f.

(a3) Si o y B son dos raices no nulas, entonces

2P _

o Pd (15)
y

- P-(p-qo (16)

es una raiz.

Si en (a2) y (a3) intercambiamos la raiz o por B y B por o, obtenemos relaciones
similares pero con otros nimeros enteros positivos p’ y q’; asi por ejemplo si en
la ecuacién (15) intercambiamos o con 3 tenemos

2(0-B) _
CHIN (7

Definimos el dngulo @ entre dos raices no nulas o'y f como
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(o-B) .
[(oe- ) (B-B)Y?

Cos( = (]8)

Elevando al cuadrado ambos miembros de la ecuacién (18) y luego
reemplazando (15) y (17) en dicha ecuacién tenemos

1
cos2<p=z<p—q)(p'—q'). (19)

A partir de la ecuacién (19), se ve que el dngulo ¢ puede asumir solo los
siguientes valores

®=0° (180°) 30° (150°) "45° (135°) 60° (120°) 90°. (20)

A continuacién se muestra un resumen de las relaciones de conmutacién entre
los elementos de la base de Cartan-Weyl {H;,Ey)

[H,,H,]=0 | @)
[H; Eql=04E, (22)

|
[Eo.E_q]=Y0'H, si a+B=0
i=1

[Eq Egl=NgEqip si a+Be Vg (23)

[Eq.Egl=0 si o+Pe Vg ya+pe Vg
el coeficiente Nyg viene dado por
1 12
Nog = i[a(p+l)q(oc-oc)] (24)

donde p y q son dos niimeros enteros positivos que caracterizan la o cadena que
contiene a . Ademds dicho coeficiente satisface [2]

Nop=-Npu ==N_g 5 =N_g 045 =Np o5 (25)

10
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Raices simples

Una raiz no nula o=(0;, ¢, ..., 0y) se llama positiva si su primera componente
no nula o; es un nimero positivo.

Por ejemplo, considerando las siguientes raices no nulas
(1,0) (1L (1,-1) (0,1) ©O-1) (1,00 ¢-1,1) 1,-1)
las primeras cuatro raices de este conjunto son raice positivas.

Una raiz no nula se llama simple si dicha rafz es positiva y no puede ser escrita
como la suma de dos raices positivas.

Del ejemplo anterior tenemos
(1,0)=(1,-1)+(0,1) y (1,1)=(1,0) +(0,1)

por lo tanto (1,0) y (1,1) no son raices simples. Las raices (0,1) y (1,-1) si son raices
simples.

Un 4dlgebra de Lie semisimple de rango 1 posee 1 raices simples, es decir el
nimero de raices simples es igual al rango del dlgebra.

A continuacién mencionamos las propiedades mds importantes de las raices
simples

(c1) Si oy B son dos raices simples, o -  no es una raiz y (o..3) <0.

(c2) Cualquier raiz positiva puede ser escrita como una combinacion lineal de raices
simples con coeficientes enteros positivos

oo = LK1 (20 entero) 2o

simple

(¢3) Si oy P son dos raices simples, el dngulo entre ellos Pup puede tomar los valores
de 90°, 120°, 135° 0 150°.

Si (0.0 < (B.B), entonces

11
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1 para @,g =120°

B-B) _{2 para Qug =135°

(a-0) |3 para Qg =150° @D
indeterminado para Pop =90°

(c4) Si o es una raiz positiva no simple, es posible encontrar una raiz simple o) tal
que o-o¥) es otra rafz positiva.

Las propiedades de las raices simples, junto con las propiedades generales de
las raices, permite determinar las demas raices a partir de las raices simples.

Con el fin de obtener todas las raices a partir de las raices simples, lo primero
que haremos serd dar el concepto de nivel.

Sioves unaraiz positiva, de acuerdo a la ecuacién (26), existe 1 niimeros enteros
positivos k; (i=1,2,...,]) que permiten expresar dicha raiz como una combinacién lin-
eal de raices simples. Si

>k =N, (28)

decimos que la rafz positiva o. pertenece al Nésimo nivel. En particular, todas las
raices simples pertenecen al primer nivel (N=1). De la propiedad (c4) vemos que una
raiz positiva del Nésimo nivel, puede ser obtenida por la suma de una raiz simple con
alguna raiz positiva del (N-1)ésimo nivel. En particular si un nivel esta vacid, es decir
si dicho nivel no contiene ninguna rafz positiva, todos los niveles sucesivos también
estardn vacios.

Para hallar todas las raices, primero debemos hallar todas las raices positivas,
una vez obtenidas todas estas raices (raices positivas), las demas raices se obtendran
usando la propiedad (al).

Ahora veremos los pasos a seguir para obtener todas las raices positivas.

Asumimos que conocemos todas las raices positivas hasta un cierto nivel,

12
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digamos hasta el Nésimo nivel.

Si a=Y ko) es una rafz positiva que pertenece a este nivel (Nésimo),
consideramos la a® cadena (o¥ es una raiz simple) que contiene a C.

De acuerdo a la ecuacion (15) tenemos,

P=4=— 7 75
NEINNEY

Y I ooali) . gfK) . . . ;
o (ol o™/ raices simples ) (29)

k=
SRR oK)

Como conocemos todas las raices positivas hasta el nivel Nésimo, podemos
verificar si o-mo® es o no una raiz para algiin nimero entero positivo m, de esta
manera podemos conocer el nimero p relativo a la o® cadena que contiene a ¢,
luego usando la ecuacién (29) determinamos el valor de g, y si ¢ 2 1, entonces o+a®
es una raiz del (N+1)ésimo nivel. De esta manera podemos obtener todas las raices
positivas a partir del primer nivel, vale decir a partir de las raices simples por medio
de un procedimiento recurrente.

Diagrama de Dynkin

Los diagramas de Dynkin muestran de manera abreviada todas las raices simples
correspondientes a cada dlgebra de Lie semisimple. En un diagrama de Dynkin cada
raiz simple es representada por un pequefio circulo. Pares de raices simples (circulos)
que estan conectados por una, dos, o tres lineas, corresponden a dngulos de 120°,
135°, 0 150° entre dichas raices. Pares de circulos que no estan conectados,
corresponden a pares de raices simples cuyo dngulo entre ellos es de 90°. Los circulos
negros corresponden a las rafces simples con menor longitud respecto de las longi-
tudes de las demds raices simples, mientras que los circulos blancos corresponden a
las raices simples con mayor longitud respecto de las longitudes de las demas raices
simples. Si todos los circulos son de color blanco, quiere decir que todas las raices
simples tienen la misma longitud. Como ejemplo a continuacién mostramos el diagrama
de Dynkin del dlgebra su (/+1) (I=1,2,3,...)

OC( 1) 06(2) OL([ )

O Oﬁ ....... O___O

Diagrama de Dynkin del dlgebra su(/+1)

13
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Ejemplos
Algebra de Lie semisimple de rango 1

Un élgebra de Lie de rango uno poseeré solo una raiz simple, denominemos
1) a dicha rafz. Para este caso el primer nivel N=1 contiene a la raiz o). De acuerdo
con al ecuacién (26) el segundo nivel N=2, puede contener solo a la raiz 20(", pero
de acuerdo con la propiedad (al) -o? y oV son las tnicas raices no nulas del tipo
ko, por lo tanto 2" no es una raiz, es decir el segundo nivel esta vacié, entonces
tenemos solo una raiz positiva oY, en consecuencia todas las raices no nulas vienen

a ser 0¥ Puesto que tenemos 2 raices no nulas y el rango del dlgebra es uno, la
dimension del dlgebra es para este caso

n=2+1=3,

Si escogemos V) =1, usando (13) obtenemos g;1=2, a partir de esta dltima
ecuacién tenemos g''=1/2.

Usamos (22) y (23) obtenemos

[H,E_]=-E (30)
[E,,E ]—lH
1°+~-] 9 1

Sea {S1,5,,53}, una base de esta algebra de Lie de dimensién 3, cuya relacion
con la base de Cartan-Weyl {H;,E|,E.;} viene dada por

Sl :El +E_l
S;=H,

Empleando (30) y (31), obtenemos

3
[S;.5;1= Yie Sy
k=1

14
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Vemos entonces que esta algebra de dimensién 3 de rango uno, es el algebra
su(2).

Algebras de Lie semisimples de rango 2

Existen varios ejemplos de dlgebras de Lie semisimples de rango dos, dicha
dlgebras poseeran 2 raices simples, llamando oV y o® a dichas raices. En esta parte
discutiremos en detalle el caso cuando el dngulo entre las dos raices simples es de
Pu(1) a2) = 120°. De acuerdo a (c3) tenemos (oM.aMy/ (0. a®)=1. Tomando
a?.0®=1 tendremos que oV.aMV=1y o.a@=-1/2.

El primer nivel N=1 contiene las raices a" y o/, El segundo nivel N=2 puede
contener las raices 20, 20® o aV+a®. Sin embargo, debido a la propiedad (al)
20D y 202 no pueden ser raices. Ahora verificaremos si a"+0® es o no una raiz,
para ello consideremos la c® cadena que contiene a c"). De acuerdo a (c1), oD-?
no es una raiz, por lo tanto p=0. De la ecuacién (29) tenemos

c1(2) ,O((2)

por lo tanto q=1 y entonces oV+0? es una raiz positiva del segundo nivel. Para el
tercer nivel, sabemos que todas las raices de este nivel son obtenidas mediante la
suma de una de las raices del segundo nivel (cualquiera de ellas) con alguna raiz
simple.

Consideremos ahora la ¢® cadena que contiene a c/P+0® (raiz del segundo
nivel). Dado que (cV+0?)-aP=0l1) es una raiz pero (0 D+a)-20P=0M-0? no
es una raiz, tenemos que p=1. De la ecuacién (29) tenemos

1 B 20’.(2) ~(OC(1) +O’.(2)) B 2[(1(1) ‘(7,(2) + O('(2) -CX(2)] e 112=]
-q= ?) B 2. g? ST

(X(z) 04 o O
por lo tanto g=0 y entonces (oV+0@)+0@=0P+20 no es una rafz pues g=0, si q

hubiese sido igual a 1 ahi si al"+20¢® hubiera sido una rafz positiva del tercer nivel.

Procediendo de manera andloga al caso anterior pero ahora considerando la
o) cadena que contiene a oD+, se demuestra que 20 +0/%) no es una rafz. Por

15
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lo tanto el tercer nivel N=3 esta vacio y entonces tenemos solo las tres raices positivas

b

o, @ oM 4 o®.

En consecuencia todas las raices no nulas vienen a ser,
o, +a®, y +(@® +a?®).

Debido a que tenemos 6 raices no nulas y el rango del 4lgebra es dos, la
dimensién del dlgebra es en este caso

n=6+2=28.

. : 2 ,
Si elegimos a'= (%ﬁ,%) y a® = (ﬁ,—%), obtenemos las demas raices

_a>_w“q @g@iJ) 1) mz%)
no nulas o G T2h © 502 O +0 3,Oy

(0P +0@)= (—7—3— ), luego usando (13) obtenemos g; = 6ij, a partir de esta

ltima ecuacion tenemos g" =3§;; .

Para este caso {Hj,H; ,E(_&7 1) E(?b?_%), E(—?ﬁ,—g)’E(-?jg,g)’E(j;,o)’
E(—j;,o)} , viene a ser la base de Cartan-Weyl, usando (22), (23), (24) y (25), obtenemos

las relaciones de conmutacién entre los elementos de esta base

1
W Bl =25 3B aay)
1
HB ey ) =2 =Bl )
1
W Blegro)l =#75 Ples o
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1 1
(EGs4) Elar-y)l= 2.3 H; 2 H,
[E E ] Ly 1y
Grs) Plagma) = o g T
1

1
(E(a) Elms)= 5 ko)
]
Blarah Blgol =5 Blana)
1
(B (rt) Blgo) = 75 Blant)

Esta dlgebra de dimensién 8 de rango dos, es el algebra su(3) [2].

Conclusiones

En este trabajo damos una regla prictica para obtener todas las raices de una
ilgebra de Lie semisimple a partir de las raices simples. Una vez determinadas todas
las raices (como se vi6 en los ejemplos), se puede hallar las relaciones de conmutacion
entre los elementos de la base de Cartan-Weyl.

Un algebra de Lie posee varias bases, vimos que para un dlgebra de Lie
semisimple existe una base especial denominada base de Cartan Weyl, donde las
relaciones de conmutacién entre los elementos de esta base adoptan una forma que es
muy usada en Fisica.

17



REVISTA DE LA FACULTAD DE CIENCIAS - UNI

BIBLIOGRAFIiA

(1]  Greiner, Walter, Muller, Berndt, Quantum Mechanics: Symmetries, Berlin, Springer-

Verg 1994.
(2] L. Fonda, G. C. Ghirardi, Symmetry Principles in Quantum Physics, Textbook Binding,

1986.

18



REVISTA DE LA FACULTAD DE CIENCIAS - UNI

R ¥

El método de Newtomn
(amortiguado) para
desigualdades variacionales

Hermes Pantoja Carhuavilca”,
William Echegaray Castillo**

RESUMEN

El trabajo presenta un algoritmo de Newton (Amortiguado) para resolver
problemas de desigualdad variacional basando la formulacién de estos
problemas como un sistema de ccuaciones usando la aplicacién Minty.

El propésito de este método es asegurar la convergencia y una convergencia
cuadritica local bajo la suposicién de regularidad. Bajo la suposicion de
regularidad débil y algunas condiciones mild, el algoritmo modificado
demuestra que siempre existe una direccién descendente
y converge a la solucion.

ABSTRACT

The work presents Newton algorithm (Muffled) to solve problems of inequality
variacional basing the formulation of these problems like a system of
equations using the application Minty.

The purpose of this method is to assure the convergence and a convergence
quadratic local under the supposition of regularity. Under the supposition of
weak regularity and some conditions mild, the modified algorithm
demonstrates that a descending address always exists
and it converges to the solution.

* Fac. de Ciencias, UNI.
** Asesor.
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1. Formulacién de la eciacién del problema de desigualdad
variacional

En este capitulo definimos los problemas de desigualdad variacional,
complementariedad lineal y no lineal; establecemos sus relaciones. Ademads
presentamos la definicién de una funcién B-diferenciable y varias propiedades
importantes que se derivan de dicha funcién, formulamos los problemas como un
sistema de ecuaciones usando la aplicacién Minty. Finalizamos este capitulo
introduciendo una funcién mérito que permitird desarrollar un algoritmo convergente
en la busqueda de la solucién al sistema de ecuaciones.

1.1 Las definiciones del problema y hechos basicos

Definicion 1.1.1 (Problema de desigualdad variacional)

Sea X un subconjunto no vacio de R" y F: R"—>R" una aplicacién. El
problema de desigualdad variacional, denotado por VI (X, F), es encontrar un
x* e X tal que:

Fix®¥)T(x-x*) 20, V xte X (1.1)

Uno tipicamente asume que el conjunto X es cerrado y convexo.

Definicion 1.1.2 (Problema de complementariedad no lineal)

Sea F: R"—=R" una aplicacién. El problema de complementariedad no lineal,

denotado por NCP (F), es encontrar un vector x* € R} tal que:
F(x*)T(x*) = 0, F(x*) e RY (1.2)

Cuando F es una funcién afin de x, decimos F(x) = ¢ + Mx, donde g € R"

> NXN

es un vector dadoy M € [ es una matriz dada entonces, el problema NCP (F)
se reduce al Problema de Complementariedad Lineal, lo cual denotaremos por LCP

(g, M).
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Definicién 1.1.3 (Problema de complementariedad lineal)

Sea F: R"—R" una aplicacién. El problema de complementariedad lineal,

denotado como LCP (g, M), es encontrar un vector x*¥e RY tal que:
g + Mx* 2 0, «x*2 0 (1.3)
(g + Mx#) Ty > 0 (1.4)

donde: ge R" es un vector dado y Me R™" es una matriz dada.

Ejemplo 1.

Sea f: I = [a,b] = R una funcién continuamente diferenciable. Buscamos
los puntos xg € 1 tal que:

f(xo) = I\/IinxE 1f(x)

Tres casos pueden suceder:
1. Sia< xp< b, entonces f ' (xo) = 0;
2. Si xp = a, entonces f ' (xg) 2 05y

3. Sixy = b, entonces f ' (xg) <0

Lo que es equivalente a: /' (xg) (x —xg) 20 Vxe I Estadesigualdad tambic
es una Desigualdad Variacional.

1.2 TFormulacién del problema

Para el problema de desigualdad variacional VI (X, F) donde:

X ={xe R" /g <0, i=l...m; h(x)=0, j=1,...p}

F, g, h, son continuamente diferenciables, si x* es solucion del problema y si una
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calificacion de restriccion es satisfecha en x* entonces existen vectores y* e R™

y v e IRP tal que las siguientes condiciones de complementariedad mixtas son
satisfecha en (x*, y*, v¥)

F(x) +Vea(x)y +Vhx)v = 0 - (1.5)

y20,¢gx)<0, gx)'y =0 (1.6)

h(x) =0 (1.7)

Para escribir (1.5) — (1.7) como un sistema de ccuaciones, definimos:
vty = max{u,0}, uw=min{u,0}, i=l..m;
wt=(uty,.. 0" u=(uy,..um)"
Debido a que y 2 0. sea u* = y. Debido a que g(x) <0 y gx)Ty=0,

podemos escribir que u=g(x). Asi podemos verificar que (1.5) — (1.7) es equivalente
al siguiente sistema de ecuaciones no lineales:

F(x)+Ve(x)ut+Vh(x)y = 0 (1.8)
g(x)—u =0 (1.9)
x) =0 (1.10)

En el contexto del problema de complementariedad no-lineal donde g(x) = —x el
sistema de ecuaciones [08] — [10] se convierten en:

F(x)-—ut=0 (1.11)

X+u =0 (1.12)

Puede ademas ser reducido a:

F(x*) —x=0 (1.13)
donde:

A F
+ o+ + — =..- -
X "(,\'I ,...,.Xm) » X —(,\1 ,...,.Xm) s Y

\,+ = max(x;,0), X; = min(x,,0), i=1,....m.
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Las construcciones de x* y x~ son frecuentemente referidos como la aplicacion
Minty.

Sea H: R™™P R™™P 1a funcién definida por:

F(x)+ Vg (x)u+ + Vh(x)v
H(z)= —g(X)+u
— h(x)

(1.14)

donde z = (x,u,v)T € R™™*P . Usando esta funcién, el problema para resolver VI
(X, F) se convierte en el problema para resolver el siguiente sistema de gcuaciones:

H(z) =0 (1.15)

Para encontrar un cero de la funcién H, el método ordinario de Newton no
puede ser aplicado ya que H no es una funcion continuamente diferenciable. El
objetivo bésico de este trabajo es desarrollar un método generalizado de Newton
para las funciones los cuales no son F (réchet)—diferenciable pero que tienen B-
derivadas en todas partes.

1.3 Las definiciones de derivadas

Definicién 1.3.1 (Derivada de Fréchet)

Sean X e Y dos espacios normados y F es una aplicacion Fréchet en xpeX
si y s6lo si, existe una aplicacion T € L(X, Y), tal que:

F(xp+h)-F(xo)=T(h)+o( |n})

donde L(X,Y)={T:X — Y / T es lineal y continua}

Esto implica, en particular que:
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o F(xg + 1) = F(xg) = T(h)

[[},ﬁ-n}o ] ) (1.16)

A la funcional T la llamaremos diferencial de Fréchet en xq y la denotaremos
por F' (xg) := T.

Si X = R", entonces la diferencial de Fréchet coincide con el concepto de
diferencial del andlisis clasico.

Definicion 1.3.2 (Derivada direccional)

Sea S < R™ un conjunto no vacio y f:S—R una funcién continua. Sea ze S

y de R" un vector diferente de cero tal que z+AdeS para A>0 suficientemente

pequefio. La derivada direccional de fen z a lo largo del vector d, denotado por
f "(zd) es dado por el siguiente limite si_este existe:

) 2+ Ad) -
£ (ed) =Ah_r>%+ S( /1) f(2)

La derivada direccional de una funcién vectorial H, definido en (1.14), de
un vector z a lo largo de d, es denotado por H'(z,d).

Un concepto cercanamente relacionado a la derivada direccidn es la
B-derivada

Definicién 1.1.3 (La B-derivada)

Una funcién H:R"—R" se dice que es B-diferenciable en un punto z si H

es lipschitziana en una vecindad de z y ademds existe una funcién BH (z): R"—R",
llamada la B-derivada de H en z, la cual es una funcién homogénea positiva de grado

1 (es decir: BH(z)(Av) = ABH(z)v, ve R", A20) tal que:

24



REVISTA DE LA FACULTAD DE CIENCIAS - UNI

H(z+v)—H(z) - BH(2)(v) _

i

lim 0

v—0

Si H es B-diferenciable en todos los puntos de un conjunto S, entonces se
dice que H es B-diferenciable en S.

Definicién 1.3.4

La B-derivada BH (z) se dice fuerte si:

H(z+v)—H(z+w)—BH(z)(v—w) -0

|
v —w

lim
(v,w)—(0,0)

Teorema 1.3.1.
Sea H(z) definida por (1.14). Entonces:
a) H es B-diferenciable en todas partes, y la B-derivada de H en un vector z
= (x, y, V)T a lo largo de la direccién d = (dz, du, dv)T, denotado por

H' (z, d), 6 BH (z) d esta dado por:

m p

VF(x)+ ZIl;rvzgi(,\') + Zvjvzhj(,\‘) dx + Vg(,\')(/u+ + Vh(x)dv

i=0 j=1
- Vg(x)T dx+du~
~Vh(x)" dx (1.17)
donde:
du; , Siou; >0 0 ,Siou; >0
duf ={max(du;0) | Si w;=0 'y du; =<min(du;,0) , Si ;=0
LO , Siou; <0 Ldui ,Siou; <0
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b) Denotando:
o(z) = {1/ u>0)
B(z) = {i / uj= 0}
Mz) = {i / uj < 0)

Entonces H es F-diferenciable si y solo si el conjunto p es vacio. Ademads
si el conjunto § es vacio entonces la B-derivada BH(z) es fuerte.

1.4 Introduccién de una funcién mérito

Para desarrollar un algoritmo convergente en la bisqueda de la solucién al

problema [15], necesitamos introducir una funcién mérito 6 : R* =R definida por:

0(z) = % H(z)" H(z) :% [H(z)|? (1.18)

Aqui, r =n + m + p.

Claramente, encontrar un cero de H es equivalente a resolver un punto minimo
global z* de 6 con 6(z*) = 0.

La funci6n 0 es generalmente no F-diferenciable. Sin embargo, esto es siempre
B-diferenciable.

Teorema 1.4.1
Sea 0 :R*—IR definido por (1.18). Entonces:

Si B(z) = ¢ entonces 0 es fuertemente F-diferenciable en z. Ademds, si z*
es solucion de H entonces 6 es fuertemente F-diferenciable en z* y VO(z*) = 0

Se nota que en un cero de H, el conjunto f§ puede no ser vacio, o que H puede
no ser F-diferenciable. En otras palabras, el ser B(z*) = ¢ no es condicién necesaria
para la F-diferenciabilidad en 6 en z*.
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2. El algoritmo de Newton (amortiguado)

El algoritmo de Newton (amortiguado) fue usado por Harker y Pang para
resolver problemas de complementariedad y por Harker y Xiao para resolver
problemas de complementariedad no lineal cuyos experimentos numéricos sugieren
que el método de Newton (amortiguado) es generalmennte mas eficiente y robusto
que el método tradicional de Newton. Esta aproximacion toma muy pocas iteraciones
que permiten converger a la solucién en donde el método tradicional falla.
Describiremos el método de Newton (amortiguado) como sigue:

Paso 0:

Sea 2% R™™P un vector arbitrario inicial, y dados i y ¢ escalares donde

1
ue <0,1> y ce<0, —2->, e>0 pequefio.

Paso k (k=1,2,...): Si IH(z*)IKe parar, en otro caso, generar 1 realizando
los siguientes dos pasos:

1. Resolver la ecuacién de Newton:

H()+H (2,d")=0 @.1)
para la direccion dke RTP
2.- Sea Me=p™ donde:

mp=Min{ {me Z+U{0} / 8(z*) - 0(zF + pmd*)220p™0(z")} } (2.2)
Fijar z¢'=zK+Ad¥, e ir al paso k + 1.

Para analizar este algoritmo, definimos:
H={ni/ i€ az)},

ne={ni/ie B(@)},

n={wi/ie (@),

g (X)={gx) /1€ a(z)},

ge(x)={g(x) /1€ )},
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g,(x) = {gi(x) /1€ v(2)),

Hr(z) = F(x)+Vg (x)u +Vh(x)v,
H, (z) = —g (x),

Hg(2) = —gg(x),

Hy(z) = -g,(x)+.,

Hi(z) = -h(x).

Usando esta notacién, la ecuacién (2.1) puede ser escrito como:

Hr(2)+[VF(x)+ E#ingi (x)+ fujv%,. (x)]dx +
i€q(z) Jj=1
+Vg, ()du, + Vg g (x) max(0, dug)+Vh(x)dv=0
Ho(2)- Vg, () dx=0
Hﬁ (x)— Vgﬁ (,\‘)de + min(0, d,uﬂ )=0

H,(2)= Vg, () dx+du, =0

H,(z)-Vhx)T dx=0

(2.3)

(2.4)

(2.5)

(2.6)

2.7)

Uno vé que d;,LY puede resolverse explicitamente de la ecuacién (2.6) como:

dp = —H){z)+Vg){x)T(L\'

denotando

p
AMD)=VFX)+ YV%g;(x)+ Zv,;V2h;(x),

iea(z) J=1

duz = max(0, duﬁ ),
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g5(2)=Hp(2).

dx
y=|dug, |
dv
HF(Z)
9,(2)=| Hy(2) |
Hh(z)
Vgpg(x)
B(z) = 0
0
A(z) Vg, (x)  Vih(x)
L(z)=| -Vgu (x)" 0 0
—Vh(x)" 0 0
[ L B(2)
P(L)_—(—B(Z)T 0 }

Entonces de (2.3) — (2.5) y (2.7) tenemos:

L(z)y+ B(z)du}.} +q,(z) =0, (2.8)

[~B(2)" y+qp(21 duj =0, (2.9)

~B(2)" y+qp(2)20, (2.10)

dup 20, (2.11)

De las ecuaciones (2.8) — ( 2.11) definimos un problema de

complementariedad lineal mixto.
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Si L(z) es una matriz no singular, se puede resolver y en términos de a’uE,
de (2.8):

y ==L (2)B(2)duf; - L(z)"' ¢, (2)

Luego sustituyendo y en (2.9) — (2.10):

[B(z)" L™ (2)B(z)du}y + B(z)T L™ (2)9, () +qp (2)lduf =0
B()' [L (2)B(R)dufy + L (2)q, (2)]+q5()20  h.(%)
duE 20

El sistema resultante se convierte entonces en un problema de
complementariedad lineal en dug.

La matriz en el problema de complementariedad lineal (¥) se convierte

entonces en B(z)" L(z)” B(z), lo cual es el Complemento Schur de L(z) en P(z).
Haciendo:

M = B(z)T L!(z) B(z)

g = B(z)" Ll(z)qy(z) + qp(z)
= du}}

w=B(2) L ()B()dufy + L (2)g, (2)]+ g5 (2).

Si B(z)'L(z)~'B(z) es una P-Matriz, entonces el problema de
complementariedad lineal (*) tiene una solucién tnica.

Una condicién suficiente de (2.8) — (2.11) para tener una solucién tnica es
que:
- La matriz L(z) es no-singular
- El Complemento Schur de L(z) en P(z), B(z)" L(z)~' B(z) es una P-Matriz.
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2.1 Regularidad y regularidad débil

Definicién 2.1.1. (Regularidad)

Sea z = (x, 1, v)T un vector arbitrario en R™"™*P. Entonces z es Ilamado un
vector regular para la funcién H definido en (1.14) si:

A(z) Vg, (x) Vh(x)
(@) L(z) =| = Vgq (x)" 0 0
~Vh(x)" 0 0

es no-singular.

(b) El Complemento Schur de L(z), dado por B(z)"L(z)"'B(z) es una P-Matriz,
donde L(z) y P(z) fueron definidos anteriormente.

Luego, si z es un vector regular entonces el sistema de ecuaciones
H(z)+H'(z,d)=0 tendra solucién tnica, con lo cual se obtendrd el vector direccion
d.

Definicion 2.1.2.

(Regularidad débil) Sea z = (x, 1, v)T un vector arbitrario en R™™P. El
vector z es Ilamado un vector regular débilmente para la funcion A definido en (1.14)
si existe una vecindad N de z tal que para cada z' = (X', 1t} v)T eN, la matriz

A(z") Vg (x')  Vh(x')
L(z)=| - Vg, (x)T' 0 0
—Vh(x')T 0 0

es no-singular, donde o.’=0(z’)

Obviamente, si un vector es regular, esto es también regular débilmente. El
siguiente ejemplo demuestra sin embargo, que lo inverso no es generalmente cierto.
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Ejemplo 2.1

Consideremos el Problema de Complementariedad No-lineal (NCP) donde

2 . )
X+ +2.\2 -2

2/\‘12 —2.\‘2 +x§‘ -2 (2.12)

P

F(x)=

De acuerdo (1.11) — (1.12), el problema NCP puede ser formulado como el
siguiente sistema de ecuaciones:

donde H: R*™—R™, y z=(xu)’e R?. Luego:
Hl(Z)Z.\'lz-l-xl +2x2 —2—111+ =0
Ho(z) =242 ' 2 _ gt
2(4,)—2,\1 "2,\2 +x5;=2-1y; =0
H3(Z)= X +Il]_ =0

Hy(2)=xy)+uy; =0

T

Sea z=(xu) =(—-;-»0,1,0) entonces:
o(z)={l},
B(z)={2},
v(z)=¢.

En el problema NCP, tenemos:
A(z) =VF(x),
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; T
L) ___[VF(A) —JE ]
I, 0

VF(x) -1L -1}
P(z2)=| Iq4 0 0
Ig 0 0

donde: I de orden |o] x n es una submatriz de /, cuyas filas son indexadas por el
conjunto ¢. /g definido de manera andloga.

Evaluando, tenemos:

2x +1 2 0 2
VF)=| = VF() 1, = ,
4x, 2xy =2 -0 | -2 -2

Ip=01 0,
Iﬁ = (O 1),
luego:
0o 2 -l 0 0 !
Lz)=|-2 =2 0 :>LFI(Z)= 0 —lz —1 |, se observa que L(z) es no-
10 0 -1 -1 =2
singular.
Ademas:

P(z)=
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=B() L)' B)=0 -1 0.0 ~-=— —1]|-1 :_%<0
-1 -1 =29

Entonces el complemento Schur de L(z) en P(z), dado por B(z)T L(z)™' B(z)
no es una P-Matriz. Por lo tanto z no es un vector regular, pues no satisface la
condicién (b) de la definicién de regularidad (2.1.1). Sin embargo z es un vector
regular débilmente, en efecto:

Solo basta tomar una Vecindad N de z tal que Vz’e N, oz) Colz'), pero
teniendo en cuenta que: |oc(z)‘=1:>‘oc(z')|=2, debido a que U=(Ua,u3,uy),

ue R2 Luego B(z")=@, y(z")=0. Entonces L(z’)=P’(z’), luego por la continuidad
de P, P’(z’) es no-singular, es decir L(z') es no singular. Por lo tanto z es un vector
regular débilmente.

De este modo, la regularidad débil es de hecho mds débil que la regularidad.

2.2 Propiedad descendente

Indicaremos primero que el algoritmo de Newton (amortiguado) descrito en
la seccidn anterior genera una direccién descendente para la funcién norma 6(z).

Proposicion 2.2.1
Sea la direccién buscada «@* obtenida al resolver al sistema de ecuaciones:

HZY+H (5 d%) =0. (2.13)

Entonces
0'(z~,d") =-20(z%) <o. (2.14)

En particular 9'(zk,(1k)<0, si H(z¥) #0,
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El método modificado de Newton (amortiguado) es descrito como sigue:

1. Si el sistema (2.13) tiene una solucién, realizaremos la bisqueda lineal a
lo largo de la direccién d*: en otro caso, fijamos dug = 0, y resolver (2.3),
(2.4), (2.7) y (2.6) para la direccion dx, dug, dv y duy. Sea d*=(dx, dug, 0,
duy, dv)

7. Si d* es una direccion descendente de 6 en z, realizaremos una bisqueda lineal
a lo largo de la direccién d* para generar ¥+ =z"+Axd*; en otro caso, buscamos
a lo largo de —d* para calcular ¥/ =z5-Ad".

Cuando (2.13) tiene una solucién, una direccién de Newton es obtenida. Esta
direccién tiene toda la informacién de la derivada de H en z. Si el sistema no tiene
solucién, una direccién generada por la modificacién anterior no es de Newton y
contiene solamente informacién parcial de la derivada de H en z. Sin embargo, si
el conjunto P es “pequefio”, lo cual usualmente se produce en la préctica, la direccion
generada por el método modificado serd una buena aproximacién de la direccion
de Newton.

El método modificado de Newton (amortiguado) generard una direccion
descendente si la regularidad débil y algunas condiciones mild son satisfechas.

Proposicion 2.2.2

Sea z un vector regular débilmente de H definido por (1.14). Si
H(z)#0, entonces:

Siempre existe una direccién descendente ¢ en z para la funcién norma 6 a
menos que se cumpla las condiciones mild:

i) H,(z)=0

(i) Vg, (x)" Hp(2)=0

(iil) Vh(x)T Hp(2)=0

(v) Hr() AG) + a0 Vea 0T +2507 Vgu (0 + 00" Vh(x)' =0

(v) Vgp(x) Hp(2)20
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(vi) gp(x)20

En particular, el método modificado de Newton (amortiguado) obtendrd una
direccion descendente a menos que (i) - (iv) sean satisfechas simultineamente.

Conclusion

Una de las dificultades que presenta el método tradicional de Newton es la
diferenciabilidad. Cuando la funcién es consideracién no es F-diferenciable en ciertos
puntos, el método puede fallar. El algoritmo de Newton (amortiguado) satisface
dichas dificultades aplicando el método de Newton a funciones B - diferenciables.
La caracteristica se basa fundamentalmente que éste nuevo método identifica aquellas
partes en la cual puede causar problemas la no diferenciabilidad de la funcién
(usualmente es el conjunto P).

Con este trabajo desarrollado estamos en condiciones de realizar experimentos
numéricos y comparar los resultados de estos experimentos con los métodos
tradicionales como es el método de Newton y se puede mostrar que éste método
es mas eficiente y robusto que aquellos métodos tradicionales para resolver problemas
de complementar.
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Una prueba general de la
buena definicion del método
lagrangeano aumentado

Yna Consuelo Rezza Espinoza*

RESUMEN

En este trabajo presentamos una demostracién de la buena definicién del
Método Lagrangeano Aumentado con penalidades P;€ 7 1a cual incluye casi
todas las pruebas existentes en la literatura. Las penalidades que describimos
consideran dos subfamilias; una, continuamente diferenciable y estrictamente

convexa (entre otras caracterfsticas) y la otra, continuamente diferenciable,

estrictamente convexa en [-b,+c0), para algin b>0 y constante en (-o0,-b].
Las pruebas de buena definicién realizadas por Rockafellar [10], Bertsekas [1],

Polyak y Teboulle [7] y Gonzaga y Castillo [2] vendrian a ser casos
particulares.

Introduccion

Problemas no lineales de optimizacion surgen espontdneamente en muchos
campos de aplicacién. Uno de los mas estudiados es el siguiente:

* Universidad Federal de Santa Catarina
Universidad Nacional de Ingenieria
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minimizar f (x)
s.a. g(x) <0, R

xe R»

donde f : RP—>RU{+e}, g;: RP>RU{+eo} parai=1...,mson funciones convexas
y cerradas.

Para resolver este problema de optimizacion convexa aparecié a fines de la
década de los 70 un método que se ha venido aplicando con éxito hasta el dia de
hoy; estamos refiriéndonos al Método Lagrangeano Aumentado. Basado, como
muchos otros métodos, en la sustitucién del problema inicial por una secuencia de
subproblemas, el primer objetivo a alcanzar serd garantizar, la buena definicion de
la sucesién formada por alguna solucién de cada subproblema.

Rockafellar [10], demostré esto mediante el uso de penalidades Estandar,
Bertsekas [1] la garantiz6 para penalidades del tipo Exponencial. Otras pruebas de
la buena definicién del Método Lagrangeano Aumentado se encuentran en 71y (2]

La prueba de buena definicion que presentamos, incluye todos estos casos.
Nosotros definimos las penalidades P.g 7 considerando dos subfamilias, una
continuamente diferenciable y estrictamente convexa y la otra, continuamente
diferenciable, estrictamente convexa en [-b,+o0) para algin b>0 y constante en (-00,-
b].

Notacion

int S Interior del conjunto S.

ri S Interior relativo del conjunto S.
R+ Conjunto de nimeros reales no negativos.

Rt Conjunto de ndmeros reales negativos.

~ m . .
R+ Conjunto de puntos de R ™ cuyas componentes son no negativas.

» M ) I .
++ Conjunto de puntos de R ™ cuyas componentes son negativas.

9f(x) Conjunto de subgradientes de la funcion de fen el punto X.
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La buena definicién del Método Lagrangeano aumentado

Definicion 2.1

Se dice que la funcién f: RP—Ru{+e} no idénticamente +o es convexa
si para todo (x,x") € R®°xR™? y todo ae <0,1> tenemos:

f (ox+(1-0)x") < af (x)+(1-a)f (x")

considerando esta desigualdad en f € R U{+oo]}.

Esta clase de funciones seri denotada asi f € Conv Rx,

Definicion 2.2

La funcién f : R"—>Ru{+eo} se dice cerrada, si para cada xe R™ se verifica
liminff(y) 2 f(x).

Y—X

Si f € ConvRR® y ademds f es cerrada, denotaremos f e Conv R2,

Consideremos el siguiente problema de optimizacién convexa:

minimizar f (x)
s.a. gi(x) <0, i=1,..,m

xe R®

donde f: RP>RuU{+e0}, gi : RP>RuU{+0c0} parai=1,...,m son funciones convexas
y cerradas.

Hipétesis 2.3

Supongamos que el conjunto de soluciones dptimas del problema (13) €s no
vacio y limitado.
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Hipétesis 2.4 (Condicion de Calificacion de Slater).

Supongamos que existe xeR" tal que gi(x)<0 Vi=l,..,m.

Definicion 2.5

Dado b>0 (posiblemente +eo), denotemos por 7 a la familia de funciones P:
RxR,.,—R o P:RxR,—R que satisfacen lo siguiente:
Si b=+eo (respectivamente 0<b<+eo)

1.- P(.,u) es continuamente diferenciable en R, estrictamente convexa en [-b,+eo>
y constante en <-oo, -b].

oP
2.- POu)=0, 5-(0,u)=u

oP
. - , =O
3.- t1l)m o (t,u) y
4- ll]llaaf(t)u)_-i-oo

para cualquier u>0 y V te R (respectivamente para cualquier u20 y V t e R).

i
Por comodidad de aquf en adelante escribiremos P'(.,u) en lugar de _EX("U) , para

cualquier u20.

Las funciones Lagrangeano y Lagrangeano Aumentado

La funcién Lagrangeano asociada al problema (P) es definida por

m

xe R", pe R™ = 1(x,p) = £(x)+ X 1;g; (%)
i=1

aparece en la teorfa de la optimizacién al tratar de las condiciones necesarias y
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suficientes que una solucién del problema (15) verifica. Como veremos més adelante,
estas condiciones (y la funcién lagrangeano clésico) seran parte fundamental en la
construccion del método Lagrangeano Aumentado en estudio. De manera similar
definimos, asociada al problema (P), L, la funcién Lagrangeano aumentado (con
penalidades Pje 7 ) dada por:

xeR", ne R™, k>0—>ux,u,7»)=f(X)+7\§P{g—ik(~X—),m) (2.1)
i=1

donde las m funciones P;:RxR.,— R (o las m funciones P:Rx R,— R) llamadas
penalidades pertenecerdn a la familiar 7~ definida antes.

La primera funcién Lagrangeano aumentado introducida tenfa aplicaci6n a
problemas con restricciones de igualdad (ver [5] y [8]). Rockafellar [10] generalizé
la metodologia para el caso donde las restricciones son de desigualdad. Esta primera
funcién L.A. es dada por:

' 2
Xe }Rn, ne ]Rm, )\v>0_')L(Xal“l’}"):f(X>+)\'2—;_{(maX[O5ui:'gi)(\_X)}J _“i2:|'
. i=1

Resultados preliminares a la descripcion del método

Definicion 2.6

Sea CcR" un convexo. La aplicacién F: C— R" se dice monétona

(respectivamente estrictamente mondtona) en C si V x, x’eC,

(F(x) - F&x')(x-x) =20
(respectivamente (F(x) - F(x"))'(x-x") > 0, cuando x # x').
Teorema 2.7

Sea f una funcién diferenciable en un abierto QcR" y sea CcQ un convexo.
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Luego f es convexa (respectivamente estrictamente convexa) en C si y sélo si Vf
es monétono (respectivamente estrictamente monétono) en C.

Prueba

Ver Teorema 4.1.4 pag 185 en [3].

Observacion 2.8

Se f: R— R convexa (respectivamente estrictamente convexa) y diferenciable.

Para p=0 (respectivamente p>0), si f(0)=pny lim,_,_, {'(t)=0 entonces
fi(t) = 0 (respectivamente f'(t) > 0) para todo t e R.
Prueba

a) Para f convexa. Dado que f'(t) = p 2 0 para t=0, analizaremos dos casos.

i) Si t=0 entonces por el Teorema 2.7 £(O)=F(0). Asi f'(t) =2 n = 0.

ii) Caso t<0. Supongamos que existe £ <0 tal que f( { )<0 entonces, para todo
t<i tenemos f(t) < f(f)<0 por el mismo teorema. Haciendo tender t—-o<
obtenemos

lim (1)< f'(1) <0

t—y—oo
lo que contradice la hipétesis. Luego, para todo t<0, f'(t) = 0. Por tanto,
f7(x) 20 v te R.

b) Para f estrictamente convexa. Supongamos que existe te R tal que f({)=0.
Entonces, para todo t<{, nuevamente por el Teorema 2.7, tenemos f'(O<f'({).
Asi ()< (1 )=0.

Por el resultado anterior (caso f convexa) sabemos que f()=0 v te R.Luego,

0<f(t)<0, lo que es una contradiccién. Por tanto, no existe te R tal que '(t)=0,
o sea, retiramos la igualdad en la conclusién de la Observacion.
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Proposicion 2.9

Sea f € Conv R™ (respectivamente ConvR™) y sea g € Conv R™®

(respectivamente ConvR?®) creciente. Supongamos que existe x? e R™ tal que

f(x%edom g. Luego, la funcién compuesta x > g(f(x)) estd en Conv R"

(respectivamente ConvR=),
Prueba

Ver Proposicion 2.1.8, pag 160, en [3].

Observacion 2.10

Para cada u=0 y A>0 fijos. Considere Pe 77 y g:R®—Ru{+} una funcién
convexa y cerrada. Entonces:

oP '
i) g(t,u) =P, ()20 Vt eR. O sea, P,=P(.,u) es creciente.

i1) P(g(.)/A,u)=P,og /A es convexa y cerrada.

Ademds, si Pe 7 es tal que para cualquier u>0, P(.,u) es estrictamente convexa (el

caso en que b=+o0), entonces P, >0, vV te R. O sea, P, serd estrictamente creciente.

Prueba

1) Como Pe 7, para u=0 fijo P(.,u)=Py(.) es convexa y difereficiable en RR.
Ademads de eso P, verifica las condiciones de la Observacién 2.8 entonces

P"l >0 Vv te R. Luego, P, serd creciente.

i) Dado que g es convexa y cerrada, para A>0 fijo, g/A también lo serd. Como
para u=0 fijo, P, es convexa e creciente, tenemos por la Proposicién 2.9 que

la compuesta P, og /A también estard en ConvR™.

La ultima afirmacion se obtiene del caso alternativo en la Observacion 2.8.
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Observacion 2.11
Para u0 en R™ y A>0 fijos, consideremos la funcién Lagrangeano aumentado

con penalidades Pie 7~ definida en (2.1). Entonces,

xe R™ 5 L(x,1,A) =L, (x) = f(x)+kiP{&}(;i),ui)
i=1

en convexa y cerrada.

Prueba

Para >0 en R™ fijo, tenemos w0 V i=1,...,m. Entonces, como cada Pi€ 77

y g; son convexas y cerradas, por Ja Proposicion 2.9, Py, @ By !\ estard en ConvR™,

para A>0 fijo.

Finalmente, como Ly es una combinacion positiva de funciones convexas

y cerradas, L, también estard en ConvR™.

Proposicion 2.12
Para f € Conv R, se tiene:
X € R™ minimiza f si y solo si 0& of(x).
Prueba

Consecuencia del Corolario 1.4.4, pag. 48 dado en [4].

Corolario 2.13

Sean f,, f2, dos funciones convexas y cerradas. Asumamos que

ridomf; () ridomf#J. Luego

O(f | +£,) (x) = of| (x) + 0fg (x) para todo x € domf, N domf,.
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Prueba

Ver Corolario 3.1.2, pag. 114 en [4].

Teorema 2.14

Sean f : RP—Ru{+e} convexa y ge Conv R" creciente. Asumamos que

f(R™) N int domg#d. Luego, para todo x tal que f(x) € domg

se d(gof)(x) siysolosi o0 tal que s d(af)(x),a € ag(f (x)).

Si ademads, g es diferenciable en f(x), la relacién anterior puede expresarse
por:

d(g o f) (x) = ag(f(x))of(x).

Prueba
Consecuencia de los Teoremas 3.6.1, pags 125 y 126, en [4] y 4.3.1., pag 265
en [3].

Definicion 2.15

Un punto x€ R" es llamado un punto de Karush Kuhn Tucker (K.K.T) si

existe algin punto ue R™ tal que se verifica

2) 0€ of(x)+ Y tidg; (%) = A%, T)
i=1

b) u=0
¢) gi(x)<0 VY i=l,.m

d) uig;(x)=0 V i=l,.,m

Si se verifica apenas a) diremos que (x,u) cumplen la condicién de Lagrange.
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Definicion 2.16

Una funcién definida de la siguiente manera: X€ R (s,x) +k, para algin

se R" y algin k € R, es llamada funcién afin.

Sea X={ xe R™: g;(x)< 0} el conjunto de puntos viables para el problema

(P). Denotemos por J, al conjunto de indices correspondientes a las restricciones
g; afines:

J, = {i=1,..,m: g es una funcion afin}

Definicion 2.17

Decimos que X satisface la hipdtesis flaca de Slater si existe un punto

x%e R" en el cual:
i) gi(x%) < 0 para iel,

i) gi(x% < 0 para igJa
Al asumir la Hip6tesis 2.4, se estard satisfaciendo la hipétesis flaca de Slater.

Teorema 2.18

Supongamos que se verifica la hipétesis flaca de Slater. Entonces, para
cualquier x € R, el echo de que X sea un punto de Karush Kuhn Tucker es

suficiente y necesario para que X sea una solucién del problema (P).

Prueba

Ver Teorema 2.2.5, pag 310, en [3]
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Descripcion del Método Lagrangeano Aumentado

Consideremos la funcién Lagrangeano Aumentado con penalidades Pie

asociada al problema (P) vy (A} R una secuencia limitada de numeros reales
positivos.

El Método Lagrangeano Aumentado para la optimizacién convexa intenta
aproximar un punto de K.K.T. (que bajo la Hipétesis 2.3 y por el Teorema 2.18,

serd también una solucién del problema (P)) mediante la secuencia {x*}c R"

generada al resolver iteractivamente, partiendo de algiin punto p1° € RY W’ e R
dado, problemas del tipo:

L op | 8ilX)
minimizar L(x, i, Ay ) = £(x) + A, 3P| 2274 1 (P)
xeR" = )\'k
donde la actualizacién de p* se realiza por la férmula:
k+1
el _ OB ke ke ok _gi(xT)
That :a—yf“(Yi+ M), v =§Tk‘_’ Vi=l..,m (2.3)

(x**! denota una solucién del problema (P ).

La idea es procurar verificar las condiciones dadas por la Definicién 2.15.
Primero imponemos la verificacién de la condicién de Lagrange para todos los
iterados. Expliquemos esto.

Para x¥*! una solucién del problema (P, ) (que por ahora supondremos que
existe), tenemos por la Observacién 2.11 y la Proposicién 2.12

0edL i, (x* (2.4)

k

Evaluando la relacién (2.1) en (ux, Ay) obtenemos:
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L, (0=f+ 3P &Y
HE Ay i1 b }"k ’

usando ahora el Corolario 2.13:

i=1

m i(x)
aka ™ (X) = af(}() =+ }\'k Ea{]‘)iu}\ [—g"}\_}\_}}. (25)

Como P _,€s creciente (Observacién 2.10 i) y diferenciable en R, por el

",

Teorema 2.14,

J P B (x)=—a——Pi gi(x) 19g;(x) yizg‘(X)
}‘E( 7\'}{ ayl ulk }\'k Kk }\'k

Sustituyendo esto en (2.5), evaluando en x**! y retomando (2.4)

_ m (KT
0€dL,s, (x5 = of (x M1y + —a——PiL gilx ") dg, (x**h)
o ]=]?Y! " xl\ ) (2.6)

k+1

H,

Asi (xk*! uk+1) verifican la condicién de Lagrange, lo que garantiza que un

punto limite de la secuencia (xX, uk} (si existe) también satisfacerd dicha condicion.

Por otro lado, usando la Observacién 2.10 1 (con p=pk 20, A=M>0y x = =,
paraun ke N dado) y la férmula (2.3) obtenemos k+! >0 (respectivamente >0

para todo ke IN, para penalidades P,(.,].L%‘) estrictamente convexas).
Luego, la viabilidad dual se verifica para un punto limite u de la secuencia {1~}

Viabilidad primal y complementaridad (itens ¢ ¢ d de la Definicién 2.15
respectivamente), no se satisfacen a lo largo de los iterados. No entrando deberdn

verificarse en un punto limite (ﬁ,i) (esto sucede por ejemplo en el caso de las
penalidades de Polyak y Teboulle [7]).
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Para conseguir estos objetivos, asi como para garantizar la existencia de
soluciones del problema (P, ) y la convergencia de las secuencias (xK) y {uk),

deberemos asumir algunas hipétesis, pero ese no es nuestro objetivo. Nosotros
estamos interesados especificamente en probar la buena definicién de la secuencia

{x*}C R" generada por el Método Lagrangeano Aumentado con penalidades P,e 7

Esta prueba incluye casi todos los casos existentes en la literatura, tales como
los que se encuentran en [10] (donde se usa la penalidad Estdndar), en [1] (que usa
la penalidad Exponencial), en [7] (con penalidades Estrictamente Convexas) y en

[2] que considera penalidades con Cambio de Variable.

Comenzaremos presentando algunas definiciones y resultados que serdn de
utilidad.

Definiciones y Resultados Preliminares

Para f : RP5RU{+e0)} y algin re R™ denotemos por Si(f) a los conjuntos

de nivel de f dado por: S{(H={xe R": f(x) < r}.

Sea h: RP—Ru{+ee} una funcién convexa cerrada, recordemos su funcién

de recesién h__(d)

h(x +Ad) - h(x)

deR" > h_(d) = lim

, para x€&€ dombh.
A—reo

Proposicion 2.19

Para f € Conv R™, los siguientes items son equivalentes:

1) existe re R para el S,(f) es no vacio y compacto,

i1) todos los conjuntos de nivel del f son compactos,

iii) f_(d)>0 paratodod#0en R".
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Prueba

Ver Proposicién 3.2.5, pag. 180 en [3].

Definicion 2.20

Una direccién d # 0 en R"™ es una direccion de recesién de h si h(d) <0,

donde h'w(.), denota la funcién de recesién de h.

Observacion 2.21

Si el conjunto de soluciones dptimas de problemas (P) es no vacio y limitado
(Hipétesis 2.3), entonces las funciones f,gi,...,gm NO tienen ninguna direccién de
recesion comun.

Prueba

Por contradiccién. Supongamos que h es una direccion de recesiéon comun.

Entonces, para x*, una solucion 6ptima, tenemos que YA >0, x*+Ah serd viable

y f(x#*+Ah)<f(x*), lo que es una contradiccién, pues el conjunto optimo es
limitado. Luego, no existe direccidon de recesién comun.

Proposicién 2.22

Sean fi,....fr; m funciones en Conv R™ y tyye,tm M nimeros positivos.
m

Asumamos que existe x"e R"enel fes finito V j=1....,m. Luego, para =38 o
=1

m
tenemos fo = 2 L5 .
=

Prueba

Ver Proposicién 3.2.9, pag 182 en [3].
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Observacion 2.23

Sea f: R"—>Ru{+e} una funcién convexa y cerrada. Luego para x € R"

y Yhe R" tal que h=0,
f_(h)= lim f'(x + Ah,h)
A—yoo

donde f'(x,h) denota la derivada direccional de f en x, en la direccién h.

Prueba

Para todo x € R" y para cualquier he R" tal que h#0, por la definicién
de f'(x,h) tenemos f(x+Ah)>f(x)+Af(x,h) para todo V A>0. Entonces

. f(x+Ah)-f(x)
lim

A=

> f'(x,h)

O sea, f_ (h)>f'(x,h). Haciendo x =X +X1h para x€ R" fijo y para todo
A>0 tenemos:

£ (h)2f'(x +Ah,h) V¥ A>0

Tomando limite cuando A—eo

fo(h)= lim f'(x+Ahh) ¥ as0
A—yo0

Para y=x+AheR" VA>0 entonces f(;)Zf(y)+kf'(y,—h).

Sustituyendo y, f(x) 2f(§+7&h)+7xf’(y,—h). Pero, como f es convexa se verifica

también f’(y,h)=~f"(y,~h).

Sustituyendo esto en la relacién anterior:

f(x+Ah)=f(x) SAf'(x +Ah,h) VA >0.
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Tomando limite cuando A—ee:

im LA =T p p X anh)

A—o0 A J—e0

0 s€a,

£ (h) < lim f'(x +Ah,h)
A—yoo

Luego tenemos probada la igualdad.

Observacion 2.24

Sean f : RP—Ru{+o0) una funcién convexa y cerrada, he R" y x€ R".
Entonces

f'(x,h) = max {(s,h)}
sedf (x)

donde of(x) es no vacio compacto y convexo.

Prueba

Consecuencia del resultado (2.0.1), pag 102, en [4].

Observacion 2.25

Para P : R — R una funcién convexa diferenciable y g : RP—RU{+eo} una
funcion convexa cerrada,

definamos la compuesta x € R" = f(x) =P(g(x)).

Si P'(1)>0 Vte R entonces

f'(x,h) =P'(g(x)g'(x,h) VheR", xe€ R™.
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Prueba

Para xe€ R", arbitrario, he R™ fijo, de la Observacién 2.24 tenemos:

f'(x,h) =maxi<s,h > se 8f(x)}
= max

'h:s=P'(g(x))y,ye 8g(x)}
= maX{P'(g(X))Y‘h IYE 8g(><)}
= P'(g(x))max{y‘h = ag(x)}

usando nuevamente la Observacién 2.24 ahora con g: f'(x,h)=P'(g(x))g'(x,h), que es
lo que queriamos probar. :

La buena definicion del Algoritmo Lagrangeano Aumentado con penalidades
PiE P

Consideremos el problema (P ) bajo la Hipétesis 2.3. Sea {x*} ¢ R" una
secuencia generada por el algoritmo Lagrangeano Aumentado con penalidades Pe 72
siguiente:

W eRTOeRY, ) @.7)
X =argmin___, LGx,n5, A0 ) (2.8)
XeR k
w o = g%(yik”,uik“) Vi=1,..,m Vke N (2.9)
1

donde {Ax} es una secuencia limitada de nimeros reales positivos, L es la funcién

Lagrangeano Aumentado con penalidades Pic Py yik” =gi(x'*“)/Kk para

1=1,...,m.

Afirmacion 2.26

La secuencia {x*} esta bien definida.
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Prueba
Dados M>0 y p¥>0 (p*>0), keN arbitrario, probaremos que L“x ), NG
tiene direccion de recesién (lo que segiin la Proposicién 2.19 serd equivalente a

afirmar que los subconjuntos de nivel de L & . son compactos. Luego L A
q y nhAL p g utA,

alcanza su minimo en R™).

De la definicién de Lu'ﬂlk , como fy Pi”; °gi/ M estdn en Conv R?, por
la Proposicién 2.22 tenemos:

m

L. (zu* A) =f(2)+ A Dh; (z) VzeR"
i=1

donde h.(x) =P, (gi(x)/kk,ug‘)‘v’ i=1, .., mo también usando la Observacion
2.23:

m

lim L'pk 5 (x +Az,2) =)lim f'(x +Az,z) + Ay ), limh;(x +Az,z)  (2.10)
R \—o0

A—ro0 izl}\.-—)c‘o

Por otro lado, para z#0 en R?, tenemos dos alternativas para una restriccion
g; arbitraria: z es direccién de gi 0 no es.

i) Supongamos que g;m <0 . Entonces, para X un punto viable del problema (P)

y A>0 tenemos, por la Observacidn 2.25,
h (x + Az, z) = P, (g; (x + Az) My, 1) [g; (x + Az, 2)1/ Ay
Cuando A—e tenemos dos alternativas:

1) g.(x+Az)— —o. Entonces Pi'(gi(;+kz)/kk,u;‘)-90y g;(;+}\,z) es
limitada, o

ii) g, (x+Az) es limitada. Luego P, (g; (x +Az)/ A, uf) es limitada y como

gi es convexa g. (x+Az) > 0.
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En ambos casos,

hi(x+Az,2) >0 cuando A — oo (2.11)

i) Se g;m >0, gi(x+Az) >0y Pi'(gi(;+kz)/kk,uik)—>oo cuando ) — oo.

O sea,

L'oo(z,uk,kk) =

hi (X +Az,2) = oo, (2.12)

Sustituyendo estos resultados en (2.10) y usando la Observacién 2.23, tenemos:

f.(z) si z es direccién de recesién de las funciones g;

) caso contrario. (2.13)

Finalmente, supongamos que existe z#0 direccién de recesién de ka,x

k bl

luego, de (2.13), f;o(zo)go (o sea, z¥ es direccién de recesién de las funciones

gi y de f), lo que contradice la Observacién 2.21.

Por tanto, L'm(z,uk,Kk)>O Vz#0 en R".
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Peliculas de oxidos mixtos de
cobre y tungsteno obtenidas
por sol-gel: caracterizacion

estructural y evaluadas como

semsor de vapor

Angélica Damian Briones, Yovan Rodriguez Daga, José Solis, Walter Estrada*

RESUMEN

En este trabajo se fabricé peliculas de éxido de tungsteno, con adicién de Cu
(II), mediante un proceso combinado de las técnicas de sol gel y rociado
pirolitico. Para la obtencién del gel isopolitiingstico se partié de una solucién
acuosa de tungstato de sodio dihidratado, la cual se pasé por una resina de
intercambio iénico fuertemente dcida hasta obtener un pH aproximado de 1,1;
para obtener el heteropolitunstato de cobre (II) se aiiadi6 al gel
1sopolitingstico una solucién acuosa de sulfato de cobre penta hidratado a
diferentes concentraciones a fin de obtener una relacién molar Cu/W entre
0,01 y 1,00. Con cada una de estas concentraciones se procedié la fabricacién
de las peliculas.

El parametro mds critico para la obtencién de las peliculas fue la temperatura,
cuyo valor 6ptimo fue 220 °C. Posteriormente las peliculas fueron sometidos a
un tratamiento térmico a 600 °C por 3 horas.

* Laboratorio de Peliculas Delgadas, Escuela Profesional de Fisica, Facultad de Ciencias, Universidad
Nacional de Ingenieria.
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La estructura por difraccién de rayos-x de la pelicula delgada del 6xido de
tungsteno es la fase monoclinica del WO;. A medida que se fue introduciendo
Cu (II) al WOs3 se observo la formacién de una nueva fase, el CuWOu., la
misma que se hizo evidente a partir de la relacién molar 0,10 de Cu/W. Para
una relacién molar Cu/W de 1,00 se observé tinicamente la presencia de la
fase CuWO,.x.

Estas peliculas se usaron como sensor de vapor de etanol y butanol, notindose
que la adicién de Cu (II) al WO;3 mejora ¢l sensor debido probablemente a un
incremento de la rugosidad y eventuaimente de la porosidad de las peliculas
con el incremento de Cu. La adicién de Cu (II) permitié mejorar
aproximadamente en 8 veces la sensibilidad al butanol respecto al WOa3, para
una relacién molar Cu/W de 0,10. Para el caso del etanol, la mayor
sensibilidad se obtuvo para una relacién molar Cu/W de 0,07.

Introduccion

La necesidad de dispositivos destinados a controlar atmosferas que pueden
contener gases toxicos o inflamables es cada vez mds importante debido a una mayor
conciencia de la proteccién del medio ambiente y la seguridad del ser humano!. Un
elemento imprescindible para este proposito es el sensor de gas, dispositivo que
detecta y cuantifica la cantidad de determinado gas en el ambiente que lo rodea.
Los sensores de gas semiconductores se basan en 0xidos metélicos semiconductores
tales como son del SnO, y ZnO?. La resistencia de estos oxidos semiconductores
cambia reversiblemente debido a la presencia de determinado gas o vapor en el
ambiente.

Los sensores de gases semiconductores son usados como alarmas de fuga de
gas natural, de incendios, sistemas de ventilacién automatica, etc. La selectividad
y sensibilidad de los mismos se puede mejorar usando dopantes y aditivos®*. Shaver
demostré que la conductividad de peliculas delgadas de WOj3 activado con Pt cam-
bia cuando se cambia la concentracién de Hy en el medio que lo rodea. Los sensores
de 6xidos semiconductores operan a temperaturas entre 300 y 400 °C. J.L Solis et
al.% reportaron que sensores de gas basados en nanoparticulas de WO3 pueden operar
a temperatura ambiente con una gran sensibilidad al H,S, lo cual hace al WO3 un
material muy interesante para esta aplicacion.

La quimica del proceso sol-gel esta basado en la hidrélisis y condensacion
del precursor molecular, donde primeramente un sistema condensado, llamado sol,
se transforma mediante un proceso de polimeramente continua a un gel. Esta
polimerizacién esta basado en la formacién de los polianiones cuya sintesis nos da
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materiales con propiedades especificas en diversas 4reas como la medicina, sensores,
etc.”9. Peliculas delgadas de WOs; sensibles al O3 han sido obtenidas por sol gel
con precursores organicos!?. Esta técnica es atractiva porque de una forma versatil,
barata y simple se pueden obtener materiales nano-porosos, incrementando la difusién
e interaccién de las moléculas gaseosas con el material semiconductor, El gel obtenido
en el proceso de sol-gel se puede utilizar como la solucién a pulverizar por la técnica
de rociado pirolitico, esta variante permite la obtencién de peliculas delgadas muy
porosas'!.

El presente trabajo esta principalmente centrado en la optimizacién del éxido
de tungsteno obtenido por la técnica de sol gel — rociado pirotitico para la deteccién
de vapores de etanol y butanol, lo cual se ha logrado obtener mediante el Ingreso
sistemdtico de iones Cu(Il) obteniéndose una mezcla del WO;3; y CuWOy4,.

Procedimiento experimental

Las peliculas.delgadas de WOj3 con y sin adicién de Cu(Il) han sido preparadas
por la técnica de sol gel — rociado pirolitico sobre subtratos de vidrio y aldmina.
El proceso de sol gel convencional se muestra en la figura 1(a)%. La idea fundamen-
tal de este proceso es de reemplazar las técnicas clasicas de alta temperatura por
un proceso que se realice a temperaturas menores y en el cual sea posible formar
una red vidriosa mediante polimerizacién de compuestos apropiados (monémeros)
a baja temperatura.

El proceso de rociado pirolitico, consiste simplemente en pulverizar una
solucién sobre un substrato caliente!2,

El esquema presentado en la figura 1(b) muestra el sistema de rociado pirolitico
empleado, que consiste basicamente en: una cdmara de vidrio, que sirve de colector
de la solucién y también contiene al pulverizador; por donde sale la solucién. Encima
de la cdmara est4 una tobera de vidrio por donde ascienden las gotas mds pequenas
hasta llegar a un substrato caliente, sobre €l cual se produce la reaccién pirolitica.

Al combinar ambos métodos nos da una nueva técnica que la denominamos
sol gel — rociado pirolitico. En este proceso de rociado pirolitico utiliza como solucién
el sol obtenido por el proceso sol gel, produciéndose la gelificacién y evaporacién
(proceso 6 en la fig. 1) del solvente sobre el substrato caliente.
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Figura 1. Esquema del proceso sol gel® (a), equipo de rociado pirolitico™ (b).
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Para la preparacién de las peliculas delgadas de WO5 y la mezcla del WO;
con CuWOs.x se sigue el diagrama de flujo mostrado en la figura 213,

Na,WO,2H.,0 0,IM Na,WO,.2H,0 0,1M

(ac)

Acidificacién por
intercambio i6nico
usando una resina
fuertemente 4acida

([WOZ(OH)ZQ

Polimerizacién
(t=45 min)

(WO,.H,O)n
pH=1,1

Rociado pirolitico

Pelicula
(WO3.HZO)n

(ac)

Acetona 2% Vol.

Acidificacién por
intercambio idnico
usando una resina
fuertemente 4cida

[ [WOZ(OH)J’]

Acetona 2% Vol.
Polimerizacion
(t=45 min)

(WO,.H,O)n
pH=1,1

Cu(SO4).5H20(S), en
~ImL H,O (relacién
molar Cu/W entre
0,01-1,00)

(WO,.H,O)n
+(Cu*, SO %)
pH=1,5-2,0

Rociado pirolitico

Pelicula
(CuWO, .H,O)n

Figura 2. Diagrama esquemdtico de la obtencion de peliculas de dxido rungsteno W03 y

oxidos mixtos de Cu'y W por sol gel — rociado pirolitico.

Para iniciar el rociado pirolitico se debe esperar que la temperatura del

substrato se estabilice en 220 °C. El rociado se hizo durante 45 minutos.
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El estudio de las propiedades como sensor de gas de las peliculas delgadas
se hizo utilizando un circuito eléctrico disefiadp en la Facultad de Ciencias'®.

Resultados y discusiones

Caracterizacion estructural

El difractograma de la pelicula delgada del oxido de tungsteno se muestra
en la fig. 3(a) y en la fig 3 (b) se muestran el de las peliculas delgadas con adicion
de diferentes relaciones molares de Cu/W. La pelicula delgada obtenida a 220 °C
no presenta picos de difraccion solo se observa los que corresponden a substrato
(fig. 3(a)), luego del tratamiento térmico sostenido a 600 °C, el 6xido de tungsteno
obtenido corresponde a la fase monoclinica del W03 de acuerdo con los estdndares'?
y los picos marcados con asterisco (*) corresponde al substrato (Al203). Debido a
que el sensor de gas semiconductor opera a temperaturas entre 300 y 500 °C y esta
se cristaliza, entonces se procedid a realizar el mismo proceso a todas las peliculas
obtenidas, se obtuvo a 220 °C y posteriormente se realiza un tratamiento térmico

a 600 °C por 3 h.
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En la figura 3(b) el difractograma para una relacién molar Cu/W de 0
correspondiente al WO3 puro. Al afiadir Cu (II) con una relacién molar menor que
0,1 no presenta una fase nueva. Para relaciones molares mayores de 0,1 se observa
la aparicién de una nueva fase correspondiente al CuWQ4.,!6. Al afiadir Cu (II) con
la relacion molar de uno a uno con el tungsteno (Cu / W igual a 1), se obtiene
tinicamente la fase CuWOQ,.,, como se muestra en la fig. 3(b).
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Angulo de Difracadn 20 (°)

(b)

Figura 3. Difractograma de rayos-X (a) de la pelicula delgada WO3 obtenida a 220 °C y
con un posterior tratamiento a 600 °C por 3 h. y (b) el WO3 con adicién de Cu (II) con
relaciones molares Cu/W entre 0 y 1, obtenidas a 220 °C y con un posterior tratamiento a

600 °C.

Caracterizacién morfolégica

El estudio morfolégico de las peliculas delgadas se realizo por microscopia
electronica de barrido, utilizando un microscopio. Hitachi S500. En la figura 4(a)
y (b) se observan las micrografias de las peliculas delgadas de WOj3 obtenidas a 220
°C, las cuales estdn compuestas por hilos cuyas paredes tienen apariencia lisa.
Posteriormente del tratamiento térmico a 600 °C (figura 4(c) y (d)), se observa que
la morfologia de la pelicula cambia y que tienden a formar argollas semi-redondeadas
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en cuyas paredes s€ empiezan a desarrollar aglomeraciones!’, el cambio observado
del material implica un reacomodo microestructural el cual esta relacionando a la
cristalizacién del material a la fase monoclinica que se observo con la técnica de

difraccién de rayos X.

Baja magnificacion: == 5pm, Alta magnificacion: == 0,5um

& ) 3 st ik, .
S M3 IYATRY MIuC. TN < R S 0 %) 8 A L RN A LG 1 |
¥ - 4 DD S

(b) (©)
Figura 4. Micrografias SEM de las peliculas delgadas de oxido de tungsteno obtenidas a
220 °C (a) y (b), y después del tratamiento térmico a 600 °C (c) y (d).

La influencia en la morfologia de la pelicula delgada debido a la adicion de
Cu (I1) al WO3 se muestra en la figura 5. Se observa que existe un incremento de
la porosidad de la pelicula hasta que la relacién molar Cu/W es 0,10 (figura 5 (a),
5 (b)). Para relaciones molares mayores Cu/W 1,00 (figura 5 (c)), se observa que
los poros tieneden a aglomerarse, volviéndose mas compactas. La morfologia de la
fase CuWOu, (figura 5(c)) muestra que no hay la porosidad observada en la fig,
5 (a) y 5 (b), la morfologia que presenta es accidentada.

A «/,,: R

4»' ' NG

ﬂ;}v I W

1,

{a) thi el
Figura 5. Micrografias SEM de baja magnificacion (5p) de las peliculas delgadas de WO;
con adicién de cobre (11) obtenidas a 220 °C, y con tratamiento térmico a 600 °C en

relacion molar Ci/W: 0,03 (a), 0,10 (b), 1,00 (c).
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Evaluacion de la peliculas como sensor de vapor de alcoholes

La caracterizaci6n eléctrica del sensor para la deteccién de vapor de etanol
y butanol se realizé con las peliculas de WOj3 y WO3 con adicién de Cu (II) para
diferentes relaciones molares de Cu/W. Todas las peliculas delgadas se obtuvieron
bajo las mismas condiciones utilizando la técnica de sol gel -rociado ‘pirolitico.

Para estudiar las propiedades del 6xido de tungsteno con vy sin adicién de Cu
(IT) expuesto al vapor de etanol y butanol, se varié la concentracién del vapor y la
temperatura de operacion.

Un pardmetro importante en la operacién de los sensores semiconductores es
la temperatura de operacion. En la figura 6(a) se muestra el cambio de conductancia
de la pelicula delgada de WO3 para una temperatura de operacién variable entre 25
°C y 400 °C con y sin exposicién a 5 ppm de etanol. Se observa que a bajas
temperaturas la conductancia con y sin exposicién al etanol es la misma, pero a
partir de 200 °C la conductancia de la pelicula expuesta a etanol es mayor respecto
a la pelicula que no esta expuesta al etanol. Esta diferencia se incrementa conforme
aumenta la temperatura de operacién. En la figura 6 (b) se observa la variacién de
la conductancia normalizada, G(1)/Go, donde G(t) esla conductancia del sensor en
funcién del tiempo y Gg es la conductancia antes que se ingrese etanol a la c4mara.
Se tiene que la temperatura donde la pelicula tiene una mejor respuesta ocurre cuando
la temperatura de operacién del sensor es 400 °C.

WO
’ " T="C
6 I Razon de calentamiento 13°C/min 8
400 sale
5k £ v ctanol{v)
) 5ppm etanol(v) ‘ . 360
19 Al ) . ;
Z i
g O" I 5 ppm de
3 I o4 320 lt etanol(v)
(8]
3 2r ' 3 lentra \
5 etanol(v) | 280
QgL Oppm 2+ \! VY
Y =2 Vp———— T 120.240
e | 1 i 1 A 1 0 1 n 1 i 1 1 2
0 100 200 300 400 [ 2 4 6 8 10
Temperatura (°C) Tiempa (min)
(a) (b)

Figura 6. (a) Conductancia de la pelicula delgada del WO3 a temperaturas entre 25 °C y
400 °C en una atmésfera sin 'y con 5 ppm de etanol y (b) respuesta de la conductancia
normalizada G(t)/Go del WO3 a 5 ppm de vapor de etanol en aire a temperaturas entre 120

°C y 400 °C.
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La sensibilidad de un sensor de gas se define como el cociente entre la
conductancia G, del sensor expuesto al gas medida después de 2 min. que el gas
esta en la camara de prueba y la conductancia del sensor expuesto solo al aire Go,
2=0/Go.

La adicién de Cu (I1) al WO3 aumenta la sensibilidad al etanol y butanol para
bajas proporciones como se muestra en la figura 7. Para el caso del etanol se alcanza
una sensibilidad de 35 para peliculas delgadas obtenidas con una relacion molar
Cu/W entre 0,05 y 0,07; para peliculas obtenidas con mayores relaciones molares
Cu/W decrece la sensibilidad al etanol. Para el butanol se observa algo similar que
para el etanol, para este caso una sensibilidad de 50 con peliculas delgadas obtenidas
con una relacién molar Cu/W de 0,10; luego la sensibilidad decrece para peliculas
obtenidas con mayores relaciones molares Cu/W. La disminucién de la sensibilidad
estarfa relacionada por la formacién de una nueva fase, CuWOa.«, determinado por
difraccién de rayos X el cual no tendria buenas propiedades como sensor y la
disminucién de la porosidad de la morfologia de la pelicula.

&0
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50 ¢ Temperatura del sensor 400°C
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Figura 7. Sensibilidad de las peliculas delgadas con diferentes razones molares Cu/W, entre
0y I para una concentracion de 5 ppm de vapor de eranol v butanol, a una temperatura de
operacion de 400 °C.

Conclusiones

Se pudieron encontrar pardmetros optimos para la obtencion de peliculas
delgadas de WO3 y CuWO,., sobre alimina. La temperatura de obtencién de las
peliculas delgadas es 220 °C y un tratamiento a 600 °C por 3 horas. Con las técnicas
de caracterizacién de difraccion de rayos X nos permiten afirmar que la pelicula
depositada es 6xido de tungsteno en fase monoclinica.
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Con la adici6n de cobre (II) al sol isopolitingsteno a partir de una razén molar
Cu/W de 0,10 permite la formacién del CuWOQy.,. La formacién de éste compuesto
alcanza cuando se tiene una relacién atémica de un cobre por una de tungsteno, es
decir Cu/W de 1.

Con respecto a sus propiedades como sensor, la adicién de cobre al 6xido
de tungsteno permite mejorar la sensibilidad al vapor de etanol y butanol con respecto
al 6xido de tungsteno puro donde se alcanza mejorar la sensibilidad en 8 veces en
comparacion al 6xido de tungsteno puro y luego decae. Las peliculas estudiadas
muestran mayor sensibilidad al butanol en comparacién al etanol. La adicién del
cobre (II) da como resultado un aumento de respuesta como sensor de vapores de
alcoholes, la cual esta relacionada con la porosidad de las peliculas, permitiendo que
el vapor tenga una mayor 4rea. Mientras que para relaciones molares altas la

porosidad disminuye, lo cual también esta relaciona con la formacién de la nueva
fase CuWOy,.,.
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Funciones de Green
para un problemsa
del electromagnetismo

Carlos Enrique Valcércel Flores*

RESUMEN

Estudiamos las ecuaciones de Maxwell dentro de un espacio Q
y las resolvemos usando el método de la funcién de Green.
Encontramos que el resultado es el mismo que se obtiene por el denominado
método de las imdgenes. La ventaja estd en que aqui resolvemos las
ecuaciones sin hip6tesis ad-hoc, solo considerando las condiciones iniciales y
de contorno del problema.

ABSTRACT

We study the Maxwell’s equations within an space we will called © and we
resolve them using the method of the Green’s function. We find that our result
is the same we get by the method of the images. The principal advantage is
that here we resolve the equations without ad-hoc hypothesis, we only
consider the full well-posed problem, i.e. initial conditions plus boundary
conditions of the problem.

* Grupo estudiantil de Fisica Tebrica. K19981125@uni.edu.pe

70



REVISTA DE LA FACULTAD DE CIENCIAS - UNI

Introduccion

Consideramos una regién del espacio € dentro de la cual existe un medio
homogéneo con constantes €y y Ho, ademds de una distribucién de cargas p(r,1)
y una distribucién de corrientes J(7,t). Ahora convertiremos las ecuaciones de
Maxwell a las ecuaciones de D’ Alembert para el potencial eléctrico y el potencial
vectorial magnético. Luego resolveremos las ecuaciones de D’ Alembert por medio
de las funciones de Green, considerando todas las soluciones, esto es, el potencial
retardado y el potencial avanzado junto con las condiciones de contorno.

Dentro de Q el campo eléctrico E y el campo magnético B vienen
determinados por las ecuaciones de Maxwell

Jo)

0r11

V.-E="
& (1)
V-B=0 )
VXE+9B=0 (3)
Vx B —9E = 1o, @)
Cc

donde estamos usando la notacién d=9/0r. La ecuacién (2) nos permite definir
el potencial vectorial magnético A segin

B=VXA. (S)

Reemplazamos (5) en (3) y podemos definir el potencial escalar eléctrico
¢ segln

E=-V-0A (6)

Al hecho de definir los potenciales también se le denomina “resolver” la
segunda y tercera ecuacién de Maxwell. Reemplazamos (6) en (1) y obtenemos

L82<,0—V2</)=£+B(V-/~X+la(p) (7)
(;2 80 C
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Ademas, usando la identidad vectorial

VXVXA=V(V-A)-V2A (8)
en la ecuacién (4) nos lleva a una nueva ecuacién para el potencial vectorial
magnético

S A-VIA= T - V(Y- At 30) 9)
C

Sabemos que existe una indeterminacién en las definiciones dadas en Sy
(6), para esto definamos ahora un nuevo campo 71, tal que, a partir de él formamos
nuevos potenciales de la forma

A'=A+Vn (10)
¢ —on (11)

Un simple cdlculo nos lleva a verificar que
B=VxA’ (12)
E=-Vo' -3A’ (13)

Esto quiere decir que £ y B son invariantes ante una transformacién de
escala. Por lo tanto existe la libertad de poder escoger los potenciales de manera
conveniente. Escogemos entonces una restriccién conocida como el gauge de
Lorentz o calibre de Lorentz

V-A+la¢=o- (14)
C

que reemplazandola en las ecuaciones (7) y (9) nos permite obtener ecuaciones
simples para los campos. Debemos tener presente que el gauge de Lorentz no es
el inico “calibre” dtil en electromagnetismo, existe también el gauge de Coulomb

V-A=0-

Veamos como afectan estos nuevos potenciales (10) y (11) en las ecuaciones
de onda (7) y (9)

i / i 1 1
—-2~82cp ~-V3p =—282¢—v2(p—a(—282n-v2n (15)
C c C
Loraovia="t o2 veicvl Lazy_v2
—C‘z— - —;2— - + C—2 n-vm (16)




REVISTA DE LA FACULTAD DE CIENCIAS - UNI

Ademads escogemos 7] tal que

— 9% -V =0 (7)
c

De esta manera resultan invariantes las ecuaciones de onda (o lo que es lo
mismo, se mantiene el principio de la covariancia).

La ecuacion de D’Alembert

Las ecuaciones para los potenciales, bajo el gauge de Lorentz son

1

—a%p-Vip=L (18)
c €o

L 32A-V2A=p,J (19)
CZ

Tanto la ecuacién para el potencial eléctrico como las ecuaciones de las tres
componentes del potencial vectorial magnético tienen la forma

1
—282‘{’—-V2‘P:f (20)
c
que es denominada ecuaciéon de D’Alembert.

Sabemos que la funciéon de Green G(x*) = G(t, x, y, 2), es solucién de

Lzazg_vzgza(;-fo)a(z—to) 1)

C

Esto es, la funcién de Green es la respuesta a la accién de una fuente puntual
localizada en 7 =1, y que actiia en el instante 7 = 19; la funcién de Green nos brinda
la informacién sobre el efecto de este impulso mientras este se aleja del punto r.

Proposion [1]

Si G = G(*M) satisface (21) entonces

G(F,Fy:1,1)=G(R, 1) (22)
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donde f?s?—?o y 'rsi—to.
Ver referencias [2] y [3].

En tal caso las funciones de Green que satisfacen (21) son

(23)

a la funcién G* se le denomina funcién de Green adelantada y a G- se le denomina
funcion de Green retardada.

Tenemos las ecuaciones siguientes

izaZW—vz‘P=f (24)
C

%32G_VZG='5(F-FD)5(r—rO) (25)
2

Multiplicamos la primera ecuacién por G, la segunda por ¥ y luego restamos
e integramos

W=, Gfd Rydty +T (26)

donde el primer término es la solucién inhomogénea vy
1

TE—C2

[ (f90G =G f)d’Ty + [, (GV ¥ ¥V G)dSpdty  (27)

es el término debido a las condiciones de contorno.

Forma de los potenciales

Comparando las ecuaciones (20) y (26) con (18) y (19), tenemos la forma
del potencial eléctrico

=

1 Plgt=— a1 (gt
B 47580 IQ If—?o‘ d r0+47t80 ‘I.Q ‘i:—'fol

[F-

F(,])

C

PH+T  (28)
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Obtenemos también la expresién para el potencial vectorial magnético

=N
3-.
c ~&*HL+T (29

TGt -8 TGy L+

c 3= E_O_
om0t ko

A=to [

47 F -1

El primer término en la soluciéon de ¢ y A es el denominado potencial
retardado y el segundo término es el potencial avanzado.

Aplicaciones

Veremos que bajo condiciones iniciales y de contorno apropiadas, podemos
transformar a las ecuaciones (28) y (29) a la forma que usualmente se encuentran
en los textos de electromagnetismo.

Consideremos como condiciones iniciales G(F,t;7y,1y) ¥ 0G nulas para

t < to. Esto quiere quiere decir que no existe impulso antes de fo. Esto anula el término
del potencial avanzado. Ademadas tomaremos COmo espacio Q = R> y

lim w(r,n)=0 (30)

F—yoc0

con w=@,A . Luego la solucién para los potenciales toma la forma

0>'Y 3—
=— ————— d7'r 31
¥ 47e Jo IF = T 0 G
- 3G, -l
Ho 0 c 3
A=— — d 2
A IQ \r— rOI Io (32)

Para poder entender mejor el uso de los potenciales adelantados, consideremos
el caso unidimensional (onda que viajan en el eje X) para el cual la funcién de Green
(integrando en xg e yo) es de la forma

I,\"—XQ\

C

Gi(x,xo,r,zo)=% 10 T (33)
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Existe una carga puntual 1oéﬁlizada enx=ayt=0(px?)=qéx-a) &)
y una pared en x = 0, esto nos lleva a proponer condiciones iniciales y de contorno
de la forma

dp(t =0)=0 (34)
lim ¢ =p(x=0)=0 - (39)

X—00

Obtenemos el término de contorno T como
1 1
T'=—¢x-c1,0)+—0@(x +ct,0) (36)
2¢c 2c

y el término de la solucién inhomogénea es de la forma

caly_gf ol _

5 , . t (37)

Como se muestra en las dos tltimas ecuaciones tenemos tanto potenciales
retardados como avanzados, el potencial retardado est4 presente al momento de
iniciarse las ondas (debido a que la solucién inhomogenea representa el efecto de
las fuentes) mientras que el potencial avanzado aparece debido al término de contorno
en la pared. |

Conclusion

La solucién de la ecuacién de D’ Alembert para los potenciales permiten tanto
la existencia de potenciales retardados como avanzados. El hecho de eliminar alguna
solucién (por ejemplo el potencial avanzado) va de acuerdo con las condiciones de
contorno.
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Cristalografia Cosmica

Armando Bernui Leo *

RESUMEN

Un problema importante en Cosmologia es la bisqueda de las propiedades
globales del universo, y una de las mds importantes €s la maltiple conexidad.
Si nuestro universo tuviese esa propiedad, ella se manifestaria con la presencia

en el cielo de imédgenes miltiples de un dado objeto cosmico, tal como una

galaxia. La Cristalografia Césmica es un método estadistico que permite
descubrir dichas propiedades conociendo las coordenadas espaciales (r, 8, @)
de todos los integrantes de una dada clase de objetos cosmicos.
Aqui mostramos las virtudes y defectos de este método y como aprovecharlo
—segin los datos observacionales disponibles— para descubrir las propiedades
globales del universo.

ABSTRACT

An important open problem in Cosmology is the search for topological
properties of the universe, e.g. multiple connectedness which manifest itself
through the presence in the sky of multiple images of a given cosmic object

like a galaxy. Given a distribution of objects in a 3-space, the method of
Cosmic Crystallography (CC) aims to discover their topological properties
looking for distance correlations in Pair Separation Histograms (PSH). Since
these correlations appear only when the 3-space containing the objects is
multiply connected, their presence in the histogram evinces the existence of
multiple images caused by topological properties. Here we present an
introductory review of this method.

* Facultad de Ciencias, Universidad Nacional de Ingenieria. bernui@uni.edu.pe
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Introduccién

Un problema que continua a desafiar al ser humano es determinar si vivimos
en un universo de tamafio finito o si por el contrario el universo es infinito!. Desde
la antigiiedad muchos pensadores se ocuparon de esto, algunos creyeron llegar a
conclusiones definitivas en uno u otro sentido basindose en criterios que hoy
reconocemos como carentes de base cientifica. Actualmente estamos casi como al
principio pués no tenemos argumentos teéricos ni observacionales que inclinen la
balanza hacia uno u otro lado.

Las propiedades globales de un espacio, también llamadas propiedades
topoldgicas, proporcionan informacién sobre su forma, y entre estas propiedades tal
vez la més importante para la Cosmologia es la mifltiple conexidad 2. Esta propiedad
da origen a una clase interesante de 3-espacios, aquellos multiplemente conexos, sin
frontera y con volumen finito, denominados espacios compactos. Asi por ejemplo,
sabemos que existen 6 espacios tri-dimensionales con geometria Euclideana,
orientables y compactos.

Los espacios miltiplemente conexos son conocidos desde hace mucho tiempo
[1,2, 3, 4], sin embargo la posibilidad de considerarlos como candidatos del universo
se inicia recién con el modelo denominado pequeiio universo de Ellis & Schreiber
[5]. En este modelo el universo es representado por un 3-espacio compacto, cuyo
volumen finito se repite varias veces hasta alcanzar el horizonte observable. Por
datos recientes sobre —las anisotropias de- la radiacién césmica de fondo sabemos
que el tamafio de este tri-espacio compacto no puede ser muy pequefio comparado
con el volumen encerrado por el horizonte observable [6, 7].

Sin embargo, la posibilidad que nuestro universo sea pequefio no esta
totalmente descartada ni tedrica ni observacionalmente (en este tltimo caso solo se
ha limitado su tamafio minimo). Desde el punto de vista teérico los modelos
cosmoldgicos de Friedmann [8] y Lemaitre [9], describen bien la evolucién de la
materia y la radiacién después de la Ultima Superficie de Dispersién (USD) y son
soluciones de las ecuaciones de Einstein-Hilbert (EH). No obstante, es bien sabido
que cualquier solucién de la ecuacién diferencial EH es valida localmente, i.e. en
una vecindad del espaciotiempo. Consecuentemente, hipotizar acerca de las

' denominamos universo al espacio tri-dimensional (en adelante 3-espacio) donde se ubican los objetos
cdsmicos, tales como estrellas, galaxias, aglomerados de galaxias, radiacién césmica de fondo, etc.

2 un espacio es simplemente conexo cuando toda curva cerrada es contraible a un punto; un espacio es
multiplemente conexo cuando existe al menos una curva cerrada que no es contraible a un punto.
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propiedades de homogeneidad e isotropia del espaciotiempo sélo puede referirse al
sentido local de tales propiedades, y no al sentido global.

De hecho, la geometria local en los modelos cosmolégicos de Friedmann-
Lemaitre (FL) satisface las propiedades de homogeneidad e isotropia local descrita
por la métrica de Robertson-Walker (RW) [10] ds? = di?* — a*(f)do?, donde a(?) es
el factor de escala, y do? = dy? +F2(x) [d9 + Sen? 0d@?] es la métrica de los
3-espacios t = constante y que denotaremos por M. Las funciones Fi(y) = Sen %,
x, Senhy, donde k= +1, 0, -1 es el pardmetro de curvatura normalizado caracteriza
la geometria esférica, Euclideana e hiperbodlica respectivamente. Mds ain, sabemos
que los M} son espacios de curvatura constante obtenidos de la particién (o teselaje)
del 3-espacio M de la siguiente forma M = M,/ T donde I es un grupo discreto
de isometrias sin punto fijo® del espacio M,, el cual es llamado el recubrimiento
universal de My (e.g. [11]).

Aquf remarcamos que la eleccién del parametro k=+1, 0, -1 en la métrica
de RW determina sélo la geometria local de M; (y de paso también la de My). Desde
que el espacio simplemente conexo M, y el espacio miiltiplemente conexo My
comparten las propiedades locales de homogeneidad e isotropia podemos dotar
indistintamente ambos espacios con la geometria local de RW. Consecuentemente
la relatividad general (o cualquier otra teorfa métrica de la gravitacién) no puede
distinguir entre M) 0 My, tampoco puede determinar cuél es la estructura global —
también denominada estructura a grande escala— del universo.

En el campo observacional notamos que aun es controversial la escala correcta
a la cual la materia se distribuye homogéneamente. Hoy en dia, las observaciones
més profundas indican un universo con regiones extremamente densas —los llamados
super-clusters de galaxias, como por ejemplo “la gran muralla” y también estructuras
tipo filamento— pero también grandes vacios [12].

Frente a este panorama surgen entonces algunas preguntas interesantes:
;cudles son las propiedades globales del universo? ;como podemos usar los
datos observacionales para determinarlas? jel universo es simple o multiplemente
conexo?

En este articulo introductorio sélo consideramos el caso de los 3-espacios con
geometria Euclideana Mo = R®3. En la seccién 2 haremos una breve introduccion
al método de la Cristalografia Césmica y a los histogramas de separacién por pares

3 esto garantiza que el espacio obtenido por el teselaje no tiene puntos privilegiados (no existe un “centro”).
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(HSP). En la seccién 3 deduciremos la expresion analitica o esperada teéricamente
del HSP, denominada Histograma de Separacion por Pares Esperado (HSPE). En
la seccion 4 discutimos las probabilidades analiticas o te6ricas de las isometrias
Euclideanas y calculamos explicitamente el valor correspondiente a las translaciones
de Clifford. Luego en la seccién 5 mostramos, en histogramas simulados
numéricamente, los resultados de las diferentes isometrias Euclideanas en’los HSP.
Finalmente en la dltima seccién, hacemos un resumen de lo estudiado y sugerimos
una alternativa al problema de la inexistencia de catalogos observacionales completos;
este tipo de catélogos resultan necesarios para el método de la Cristalografia Césmica,
al menos en su formulacién original.

El método de la Cristalografia Césmica

La Cristalograffa Césmica (CC) es un método estadistico que busca descubrir
las propiedades globales del universo [13-24]. El método se basa en el hecho que
la distribucién de objetos en un 3-espacio se relaciona con sus propiedades
geometricas y topolégicas. El método busca correlaciones de distancia entre dichos
objetos a través de Histogramas de Separacién por Pares (HSP). Para esto es
necesario que los objetos cuyas separaciones se graficardn en el histograma sean
de un mismo tipo, que estén distribuidos en todo el universo observable y por
Supuesto que se conozcan sus posiciones (r, 0, ¢) en el 3-espacio. En tal caso los
objetos pasan a formar parte de un catdlogo completo.

Las hipétesis en que se basa el método de la CC son:

o Un espacio 3-dimensional con una geometria local, es decir una métrica,
la cual sirve para calcular distancias entre los objetos césmicos localizados
en dicho espacio y listados en el catdlogo. Aqui asumimos que la métrica
del 3-espacio M= R°, es

do® = dr? + 2 [d6? + sin20d¢?] = dx? + dy? + dz2,
o Un catdlogo completo C de N fuentes césmicas —con coordenadas (ri 8,
varphi;), i =1, 2, ..., N-las cuales se distribuyen siguiendo alguna ley de

distribucion. Aqui usaremos catilogos de objetos césmicos puntuales,
“aleatoriamente” generados y homogéneamente distribuidos. Es decir

p(r, 6, @) = cte.
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o Un horiZonte (o cut-off), es decir
ri < RH

parai=1,2, .., N*%

De hecho, el resultado que se evidencia en los HSP’s es notable, como veremos
en la seccién 5. Si los puntos en estudio estdn distribuidos en un espacio
miiltiplemente conexo M, entonces los histogramas muestran picos o pequefias
desviaciones respecto de una curva base correspondiente a una distribucion de puntos
en el espacio simplemente conexo M. Estos picos o las pequefias desviaciones
ponen de manifiesto las correlaciones entre pares de puntos, las cuales son esperadas
debido a la existencia —en la distribucién de puntos— de imdgenes miiltiples
producidas por las diferentes isométricas de M 3. Los correlaciones tipo picos
corresponden a translaciones puras —también llamadas translaciones de Clifford-,
y para las otras isometrias el HSP muestra deformaciones apreciables respecto de
la curva base que corresponde al caso simplemente conexo [19-22].

De hecho cuando los puntos se ubican en un espacio simplemente conexo
M, = My = S3, R3, 3£, estas correlaciones estdn ausentes. Mds ain la posicion,
ancho, y amplitud relativa de las correlaciones son un efecto caracteristico de cada
una de las isometrias. Por esta razén es de fundamental importancia conocer el HSPE
para poder identificar las pequefias desviaciones y diferenciarlas del ruido estadistico
siempre presente en los HSP. Conceptos como HSP, HSPE, Histograma de Separa-
cién por Pares Medio (HSPM), etc. han sido explicitamente desarrollados en [22].

Como consecuencia de la miltiple conexidad, cualquier 3-espacio con esta
propiedad cuyo dominio fundamental® se localize al menos parcialmente dentro del
horizonte presenta necesariamente imdgenes multiples. Asi, si el universo es
miltiplemente conexo entonces existen imadgenes de objetos cdsmicos que son, en
principio, observables.

En resumen, si contdsemos con catdlogos completos de objetos césmicos
observados, estos contendrian informacién sobre las isometrias del 3-espacio, las
cuales se pondrian en evidencia en los HSPM [13-23].

4 Ry ~ 10,000 h~' Mpc

Las isometrfas forman el grupo discreto T (sin punto fjjo) del 3-espacio A+, cada una de ellas genera
diferentes imdgenes muiltiples de cada punto excepto cuando I" = identidad, pues en tal caso My = My
es decir se lrata del 3-espacio simplemente conexo.

los espacios multiplemente conexos se representan por un poliedro donde cada par de caras estd
identificado; este poliedro recibe el nombre de dominio fundamental.
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Histograma de Separacién por Pares

Ahora estudiaremos como obtener, desde su definicidn, los histogramas antes
mencionados. Un HSP es un histograma normalizado del niimero de pares de objetos
vs. la distancia entre ellos (mds generalmente: vs. cualquier funcién de la distancia).
Pasaremos a construir formalmente los HSP.

Consideremos un 3-espacio % dotado con una geometria local de signatura
k. Sea Brx C M, una vecindad de radio R centrada en el origen de coordenadas
O'y conteniendo objetos césmicos. Denotamos por By el universo observable, siendo
R = Rysp el radio del universo observable. Una regla de seleccion bien definida es
necesaria para homogenizar los objetos césmicos de un catdlogo, esta puede ser por
ejemplo la luminosidad del objeto o la presencia de una cierta linea espectral
caracteristica en su espectro observado. Un catdlogo completo C es una lista
homogénea de todos los objetos césmicos presentes en el universo observable los
cuales satisfacen la regla de seleccién dada y tienen coordenadas (r, 6, @), donde
r es la distancia radial al origen r € (0, 21]

Dado el catidlogo C denotamos por ¢(¢) el nimero de pares de objetos
separados por una distancia { € (0, 2 R]. Ahora dividamos el intervalo (0, 2R] en
m sub-intervalos o bins de igual longitud A? = 2R/m, donde cada sub-intervalo
tiene entonces la forma J; = (¢; ~ (AC/2), ¢; + (ALY, i=1, 2, .., m, con centro
en {; = (i — 1/2) AL. Por lo tanto

D(L5) Y 00, (1)

TNN-DAL &

es realmente un conteo normalizado de la cantidad de pares de objetos separados
por una distancia (; que yace en el sub-intervalo J;,, Podemos observar que D(())
es en efecto un conteo normalizado Y /L, ®(¢;) Al=1; de esta manera podremos
comparar histogramas hechos con catdlogos conteniendo diferente cantidad de
objetos. Mds ain, si bien el histograma es realmente el grifico de la funcién
® vs. {; es usual referirnos a la funcién ®(¢;) como siendo el HSP.

Vamos ahora a obtener el HSPE para un 3-espacio simplemente conexo #;.
El HSPE viene definido por

1
q')cspemdo (£i)=s—

7 b Poa 2)

donde P () es la densidad de probabilidad que un par arbitrario de objetos p,
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g € Br C M del catdlogo C —donde xp, x4 son las coordenadas de dichos objetos—
esté separado por una distancia {, es

PO =y [5 4% pG5p) d>x, p(xg) 8(dp(x,,x) =0, ()

donde & es la delta de Dirac, di (x,, xg) €s la funcién distancia entre p y ¢, la
cual claramente depende de la geometria local (i.e. k = -1, 0, +1). Notemos que
p (x,) d3 x, es la probabilidad de encontrar el objeto p en el volumen @ x,.
La probabilidad total de encontrar p en todo Br debe ser naturalmente uno, esto €s
IfBR p (xp) d3x,, = 1. Asi mismo podemos también verificar que la densidad de
probabilidad P (£) estd normalizada

jOZR Py dl = 1. (4)

Para una distribucién homogénea de objetos en Bg € &3 encontramos

3
p(p) =© (R-d (0, %)) 53 )

donde O es el origen de coordenadas y © es la funcién de Heaviside O (x) = (1

+x[x1)/2,x e R La expresion P (¢£) ha sido obtenida en [24] para el caso de los

3-espacios simplemente conexos Mo= &, S5°, 743, y para una distribucién homogénea

de objetos —ec. (5)— correspondiente a catdlogos completos. Para R? obtuvimos
3020(2R - ()

P = —= (4R+0) 2R-0)° (6)
16R

Si el intervalo J; es suficientemente pequefio, una aproximacién apropiada para
el HSPE es

(Despcrado (gl) = 73((71) (7

Finalmente, por definicién del HSPE observamos que el ruido en los HSP’s estd
dado por

n(el) = O - (Dc.s'pemdo (£). (8)

Las figuras la y 1b ilustran muy bien este punto. La curva suave en la figura
corresponde a la ec. (6).
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ol L IEA W A
BNk i
-0.02} &

0 0.5 ] 1.5 2

Figura 1. (a) HSPE de K’ y HSPM para K = 50 catdlogos con N ~ 150 objetos cada uno en el
universo observable (R=1). (b) Diferencia entre el HSPM y el HSPE graficados en (a).
Isometrias en X3

Las isometrias son transformaciones de un espacio en él mismo que dejan
invariante su métrica.

Proposicion 1. Una traslacién en ®R3 es una funcién

T R — R,

xX—>x+L. 9)
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Es posible mostrar que, el conjunto de traslaciones forma un grupo isomorfo a R
y que ellas son isometrias en K>,

Definicién.- Una traslacién que no depende del punto x se denomina traslacion de
Clifford.

Corolario.- Toda traslacién en R es una traslacién de Clifford.

Proposicién 2. Un transformacion ortogonal es una funcion lineal y : R — R que
preserva el producto interno

<y(xp), Y(x2)> = <xy, X2>, (10)
Y x1, X € R’v’.

Proposicién 3. Una matriz real 3 x 3 se llama ortogonal si la transformacidn lineal
asociada es ortogonal. Ademds una matriz R es ortogonal si RTR =1

Proposicién 4. Una transformacién ortogonal es una isometria Euclideana, sin
embargo no es una traslaciéon de Clifford.

Definicién.- Se denota por O(n) al grupo de transformaciones ortogonales n-
dimensionales, o también al grupo de matrices ortogonales n-dimensionales.

Proposicién 5. Una funcion v : R3 — R3 es una isometria en R3 siy solo
siy=T,o0R,esdeciry(x) =Rx + L, Vx¢€ R3 donde L € R* y R € O(3).
Denotaremos 7y = (R, Ty).

Esta proposicién afirma que toda isometria Euclideana puede ser descompuesta
de manera tnica en una transformacién ortogonal seguida de una traslacién de
Clifford.

Proposicién 6. El conjunto de isometrias Euclideanas (R;, Tr;) forma el grupo

Isom (R").

Estudiemos ahora el caso mds simple, es decir un 3-espacio que solo posee
isometrias de traslacién pura, esto es traslaciones de Clifford, nos referimos al tri-
toro T 3. Dado un catdlogo con objetos en el poliedro fundamental de T3 encontramos
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que hay contribuciones a la densidad de probabilidad P (£) que vienen de las
isometrias de traslacién pura y que se manifiestan en los HSP como picos agudos
(con intensidad y en posiciones bien definidas).

La probabilidad que un par de objetos p, ¢ € By esté correlacionado por la
isometria g € T" viene dado por

1
'Pg(g): ; J‘BR J}}R (13'}.1)(]3’1‘(] p(.\‘p) p(xq) S(dk (xp’xq ) - !-)) S(Xq - g(xp )) (] 1)

= %J‘BR (13,\',) p(-\.p) p(g(«\'p )) 6((1;\ ('\‘IJ’ g(.\'p )) — [7), (]2)

donde dj (xp, g(x,)) es la distancia entre el par (p, g) = (p, g(p)) correlacionado por
la isometria g; como se trata de una traslacién de Clifford tal distancia es
independiente de p.

Asi encontramos que la probabilidad que un par de objetos p, g € Br C R3,

i.e. k = 0, correlacionado por la isometria de traslacién pura g € T de longitud Mg,
es

v
Ps(l) = Wg 8(6—2y), (13)

debido a la isometrfa de traslacion g(x,) = x, + Lg, donde L, € R3 y A, = |Lg es
la longitud de dicha traslacién. Luego do(Xp, g(xp)) = Ag; ademds n = N/V, V = (4n/
3) R3, N es el nimero de objetos en By, y el coeficiente v, viene dado por

Bh, A

v, =1-—5 4§ _ (14)

4R 16R?

Usando la ec. (13) en la definicién (2) obtenemos
1 Ve
(Dgspemdo((‘?i) EE L ‘778((’) dl = A;N 8i,?\,g s (15)
donde

6 _ 0 si )\'8 & ‘]i

i S Vsing e, (16)

y donde observamos que cuando la longitud A,, correspondiente a la traslacién
g € T, coincida con el intervalo de distancias J; entonces dicha isometria hace una

86



REVISTA DE LA FACULTAD DE CIENCIAS - UNI

gran contribucién al HSP (que como veremos se manifestard como un pico agudo),
caso contrario no habra contribucién. Si representamos al —poliedro fundamental
del— tri-toro T3 como un cubo de lado L, entonces las isometrias de su grupo I (ie.
las traslaciones puras que permiten identificar sus caras opuestas, ver el cubo superior
izquierdo de la figura 2) son Ag = L (en la direccién de cada eje +x, %y, %2), L\/E
(en las direcciones +xy, £xz, £yz), ... €lC.

- am e o om e = = -

25"

Ml
/’:_

Figura 2. Los poliedros fundamentales de los seis 3-espacios compactos orientables
Euclideanos: el cubo superior izquierdo es el tri-toro [3.4,25].

)

:
<
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En los 3-espacios compactos orientables Euclideanos existen isometrias que
no son traslaciones de Clifford, son las traslaciones seguidas de una rotacién,
denominadas screw motion’. Observemos los 3-espacios Euclideanos (compactos
y orientables) cuyos poliedros fundamentales se muestran en la figura 2, escojamos
el centro del poliedro como origen de coordenadas y un sistema de ejes cartesianos
(e.g. perpendiculares a las caras de los poliedros). Notamos entonces que solo el
tri-toro tiene sus 3 pares de caras opuestas identificados por sendas traslaciones de
Clifford. En cambio, todos los otros 3-espacios (excepto el cubo ubicado debajo
del tri-toro, en adelante denominado Ge) presentan identificaciones entre caras que
pueden descomponerse® como una rotacién (o transformacién ortogonal) alrededor
de un eje que une los centros de las caras seguidas de una traslacién pura a lo largo
de ese mismo eje.

La isometrfa de screw motion g € T se puede entonces representar como
L
8= Yip = Ty, 0 R;(0), (17

donde R, es una matriz que rota el 3-espacio un dngulo 0 alrededor del eje i (e.g.
1=x,y 2)y Ti; es una traslacién —de magnitud L;- a lo large del eje i. Consideremos

por ejemplo un screw motion yZLa, este se descompone en la rotacién de un dngulo
o alrededor del eje z

Cosa.  Sena O

R,(0)=| -Sena. Coso 0 (18)
0 0 1 '
seguido de la traslacién
T, (XY, 2) ="y, 2 + L), (19)

V (¢, y',2") € R*. De este modo, una traslacién de Clifford es un caso particular
de screw motion correspondiente a una rotacién de 0 grados.

Veamos por ejemplo las isometrias para el poliedro que aparece al lado derecho
del tri-toro (en adelante este 3-espacio lo denominamos 7y)

g1,y 2y =T, = (x+1,y, 2), (20)
g y,2) =T,=(xy+L,2), 1)
8 % 2 =Ty 0 R, (W2) = (—x, -y, z + L), (22)

7 literalmente ‘movimiento de sacacorcho’: avanza y-rota
8 esto se debe al hecho que los 3-espacios son orientables
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En cambio las isometrias para el 3-espacio Gg son

g1 x ¥ 2= @+L,-y -2 (23)
g2 (xy D= (= z+ L,y (24)
g3y = (= z y+1L) (25)

Jas cuales no se pueden representar como las isometrias de screw motion, Sino0 COMO
rotaciones alrededor de alguna arista seguidas de alguna traslacién (observar con

cuidado G que es el cubo debajo del tri-toro en la figura 2).

Simulaciones numeéricas

Similarmente a los calculos realizados con las traslaciones de Clifford podemos
también calcular la probabilidad tedrica de —que un par de objetos del catdlogo esté
correlacionado por— cualquier otra isometria Euclideana. Sin embargo, preferimos
ser més didacticos e ilustrar graficamente el efecto de las diferentes isometrias en
los histogramas (HSPM).

Estudiaremos ahora tres casos, es decir a los 3-espacios miiltiplemente conexos
T3, Tr, Go. Esto lo hacemos porque en ellos se presentan todas las isometrias
Euclideanas de los 3-espacios orientables. Juntamente con el histograma de cada
uno de estos 3-espacios dibujaremos el HSPM del 3-espacio simplemente conexo
K3 con el objetivo de mostrar que las isometrias aparecen en €l primero pero no en
el segundo de ellos.

Como vimos en la seccién anterior, la contribucion de las traslaciones de
Clifford es tipo delta y localizada en valores discretos correspondientes a las
isometrias traslacionales. Debido a esto ellas se manifiestan en los histogramas como
picos agudos muy notorios, en cambio las otras isometrias (i.e. las no-traslacionales)
se manifiestan en forma continua (o esparcida) y aparecen como pequefias
desviaciones respecto de la curva base. Ademas estd el problema que en los
histogramas siempre existe el ruido estadistico, asi dichas isometrias no-traslacionales
no son siempre evidentes. Debido a esto necesitamos una estrategia que haga visibles
atn las sefiales topoldgicas mds débiles presentes en el histograma. Nuestra estrategia
es doble. Primero, dado que el ruido estadistico es aleatorio, consideraremos el
promedio de histogramas, ya que al promediar K histogramas el ruido disminuye
en un factor 1/~/K . Asi, en todas las simulaciones que siguen hemos considerado
el promedio de K = 10,000 histogramas simulados. También en ellas escogimos
m =200, A =0,01 y R =1 (excepto para el caso de Gg donde m =141y R= «/5 /2).
Segundo, graficaremos junto con cada HSPM la diferencia entre el histograma medio
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del espacio miltiplemente conexo y el del simplemente conexo (R3). Como vemos,
de esta manera si conseguimos poner en evidencia las sefiales topoldgicas presentes,
pero no siempre visibles, en los histogramas.

Vamos a mostrar ahora el efecto de las isometrias Euclideanas, comenzaremos
con el caso mds simple, esto es el de las traslaciones de Clifford de T3, En la figura
3a se dibujaron sobrepuestos los HSPM de T3 y de R En la figura 3b aparece
la diferencia entre ambos histogramas. En este caso hemos considerado ~ 35 objetos
en el poliedro fundamental, lo que resulta en N ~ 150 objetos en Bg debido a las
isometrias de traslacién.

En el HSPM de T3 (figura 3a) se observa que la sefial topolégica debido a
las traslaciones de Clifford se pone de manifiesto a través de los picos agudos, los
cuales aparecen exactamente en £ = 1,2, NE que corresponden a las traslaciones

l::l,xfé;ﬂ/g'

2..
1.5}
1.
_\~
0.5
0
0.25 0.5 0.75 1 1.25 1.5 1.175 2
0.2
0.15
0.1} l
0.05} ‘ ‘
0 l l —
1.25

0.25 0.5 0.75 1 .2 1.5 1.75 2

Figura 3. (a) HSPM de T3 junto con el HSPM de R3. (b) Diferencia entre los histogramas de (a);
se observan claramente los picos debido a las isometrias de traslacién puraen f =1, w/-?j s @ ;
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Ahora estudiaremos la isometria de screw motion del 3-espacio Ty. Si
observamos el poliedro fundamental de este espacio, al lado derecho del tri-toro en
la figura 1, notaremos que la cara inferior F es trasladada y rotada para identificarse
con la cara superior. Pero simultdneamente ocurre que los otros dos pares de caras
se identifican con traslaciones purascon A =1y A = JJ2 . En consecuencia, aparecen
sendos picos agudos en { =1, J2 y no parece ninguno en £ = /3. Ademis hay
una diferencia notoria entre el pico agudo en £ = 1 que aparece en el tri-toro comparado
con el que aparece en la misma posicién en Tr. En este ultimo caso hay dos efectos
sobrepuestos: la traslacién pura de longitud ¢ = 1 debido a las caras G y J que se
identifican por traslacién pura, sumado al efecto de screw motion de la cara F. Esta
diferencia se aprecia claramente en la figura 4b (comparar con la figura 3b).

Figura 4. (a) HSPM de T junto con el HSPM de R3. (b) Diferencia entre los histogramas de (a);

se observan claramente las isometrias de screw motion en { =1 y la de traslacién pura en (=~2.
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Finalmente estudiaremos las isometrias no-traslacionales de G, dadas en las

ecuaciones (23)-(25). En este caso el radio de Bz ha sido escogido a propdsito

para mostrar en el HSPM solo isometrias no-traslacionales, es decir R = ~/2 /2. Los
resultados se observan en la figura 5.

0.006}

.

0.002}

R
[ |
|

. —
——
- |
—

~0.004

~0.006

0.2 0.4 0.6 0.8 1 1.2 1.4

Figura 5. (a) HSPM de G, junto con el HSPM de R'; la diferencia entre ambas curvas
no es evidente. (b) Diferencia entre los histogramas medios de G,y R:; en este grdfico si se
observa nitidamente la diferencia entre ambos histogramas debido justamente a las isometrias

no-traslacionales en £ =~[2 ~ 0,71 yenf{ =1,
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Conclusiones
Podemos concluir lo siguiente:

o El método de Cristalograffa Césmica es un buen método ya que nos muestra
que la distribucién de objetos es caracteristica del 3-espacio que los contiene.
Esto es, en dos 3-espacios con propiedades globales diferentes los objetos se
distribuyen de manera también diferente.

Aqui hemos visto, por medio de los histogramas, de que manera es posible
conocer algunas de las propiedades (denominadas isometrias) del 3-espacio
que contiene los objetos.

o Existe sin embargo un serio problema para la aplicabilidad de este método
al universo: no existen catilogos astrondémicos completos, es decir con
informacién de las posiciones espaciales de todos los objetos cdsmicos
localizados entre nosotros y la Ultima Superficie de Dispersion. Esto se debe
principalmente a los siguientes factores, ‘

. alaevolucién del universo, ya que los objetos c6smicos ahora observados
no tuvieron siempre la estructura que hoy en dia los caracteriza. Y como
observar un objeto muy lejano significa observar hacia tiempos muy
remotos —debido a la finitud de la velocidad de la luz— entonces resulta
dificil saber cual objeto césmico hoy catalogado es imagen de otro;

= los objetos cdsmicos més lejanos observados —i.e. los quasares, y solo unos
pocos— se localizan aproximadamente a la mitad del radio del universo
observable;

= el plano de nuestra galaxia —la via lactea— oscurece todo objeto ubicado
detras de €l en el rango del espectro visible y de microondas;

= 1o es posible medir la distancia de un objeto a nosotros, solo su posicion
angular en la esfera celeste y su corrimiento al rojo (redshift); el cdlculo
de distancias depende del modelo cosmoldgico que se adopte, el cual a
su vez depende de los denominados parametros cosmoldgicos, ain no
determinados con suficiente precision.

° La estrategia de promediar histogramas parece una buena opcion para
minimizar el ruido estadistico y evidenciar asf las sefiales topolégicas en los
histogramas.

o Dado que no son viables los catalogos observacionales con informacidn tri-

dimensional de cada objeto césmico (i.e. sus 3 coordenadas espaciales (r, 6,
®)), en la prictica no se pueden construir los HSP ni podemos pretender
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encontrar correlaciones de distancia entre objetos. Debemos en cambio buscar
correlaciones angulares entre los objetos catalogados con solo sus coordenadas
angulares (6, @) de ubicacién en la esfera celeste.

Los catélogos mds convenientes para este anilisis son los mapas de
temperatura de la Radiacién Césmica de Fondo [26, 27].
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Fl sol visto desde la tierra

Daniel Reyes Castillo*

RESUMEN

El presente trabajo estudia ¢l movimiento del Sol visto
por un observador en Tierra. Comenzamos transformando
la ecuacion de movimiento de la Tierra respecto al Sol
—deducida usando la mecdnica Newtoniana— para obtener las ccuaciones de
movimiento del Sol en la esfera celeste. De estas identificamos la ccuacion de
la érbita periddica (en realidad no tan periddica) del Sol y la ecuacion del
movimiento del plano de ésta. Analizando estas ecuaciones, hallamos la
velocidad de la 6rbita, la cual luego asociamos a la duracion de los dias.
También deducimos los miximos y minimos de la velocidad de la orbita y de
la posicion del plano de esta orbita.

ABSTRACT

In this work we study Suns motion seen by an observer on Earth.

We transform the Earths motion equation refered to the Sun
—deduced from Newtonian mechanics— to obtain the Suns motion
equation for the celestial sphere. Then we identify the Suns periodic equation
(not so periodic actually) and its plane motion equation.

In the analysis of thesc, we find the orbits velocity, which is then associated
to days duration. We also deduce the maximums and minimums of the orbits
velocity and of its plane position.

* Universidad Nacional de Ingenieria - Facultad de Ciencias
*danielreyes4 @ hotmail com
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Introduccion

La inclinacién del eje terrestre influye en la periodicidad con la que deberiamos
de ver al Sol (influyen también otras cosas mds). Para saber como esto afecta la
posicion del Sol respecto a la Tierra, se necesitan conocimientos no muy avanzados
de fisica y matemdtica. Necesitamos la trayectoria de la Tierra respecto del Sol,
cambios de sistemas de referencia (por rotacién y traslacién), cambios de coordenadas
(de rectangulares a esféricas), un poco de trigonometria y célculo diferencial.

Hallaremos varias cosas:

o La posicién del Sol, en la esfera celeste.

o El intervalo en el que se mueve el plano de rotacién del Sol.

o La velocidad angular de rotacién.

o Los lugares (en la trayectoria de la tierra respecto al Sol) donde la velocidad
angular de rotacién tiene sus valores extremos.

La orbita Newtoniana terrestre respecto al Sol

El punto de partida es la representacion cldsica de la trayectoria terrestre

respecto al Sol, es decir una elipse de excentricidad €, en un sistema de referencia
0.

/
¥

Figura 1
Del grafico se observa que
x'"=R cos B
y' =R sen B (1)
Z'=0.
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Vamos a tomar dos resultados muy conocidos de la gravitacién clasica
5 i
R°B=h=cte

_a(l-¢7)
1+€ecosf

donde el punto denota derivada temporal. Combinando ambas, obtenemos un
resultado que utilizaremos mds adelante

B=k(l1+€ cos B ) )
donde ‘

h

ks —e—————.
a*(1-¢*)?

1l
—~
(o8
~

Primero necesitamos trasladar el origen de coordenadas que estd en el Sol
hacia la Tierra (O’ — O").

=
=
V

Figura 2

sabemos que para cambios por traslacion

r"=r"-R 4)

y como estamos trabajando con la posicion del Sol r"=0 entonces

i =k (5)
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usando (5) en (1) obtenemos

x" =R cos B
y'=-Rsen f3 (6)
Zu s O.

Ahora hacemos una rotacién por la inclinacién del eje terrestre (0" — 0"

N 2"
a

"

S

o

a
\\‘) y”,
= Figura 3

para hacer este cambio de sistema de referencia, usamos una matriz de rotacién
alrededor del eje x"

”n

X 1 0 0 x”

Y'|=|0 cosa -senally” (7)
” V4

Z 0 sena cos O z

reemplazamos (6) en (7) y resulta

x""=~R cos B
y" = —R sen B cos o (8)
2" = =R sen 3 sen .

La segunda rotacién va a ser alrededor del eje z", que es el eje de rotacion
terrestre; y, va a depender del tiempo, para que el nuevo SR gire junto con la Tierra
(0" — 0).
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z P 2=z
a
x"
X a >
ot
ot y
X y
Figura 4
esto lo hacemos mediante otra matriz
x coswt senwt 0\ x"
y|=|-senwt coswt 0|y 9)
2 0 0 1l 2"
reemplazamos (8) en (9)
x=~Rcos Bcos wt—R sen f3cos oxsen wt
y =R cos Bsen wt—R cos Bcos wt (10)
z=— R sen B sen a

Ahora que ya tenemos la posicién del Sol en coordenadas rectangulares,
debemos expresarla en coordenadas esféricas para obviar la coordenada radial, ya
que sélo nos interesa la posicién del Sol en la esfera celeste. Sabemos que

2 2
NFTY (11)

1g0 =
z

@¢=l (12)
X

usando las ecuaciones (10) en (11) y (12)
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\/1 — sen’a sen* 3

0=—arctg (13)
sen 3 senc
¢':—a)t—-£+arctg —ﬂﬁ— | (14)
2 sen B cosa

considerando la siguiente figura y la forma de la ecuacién (14), observamos que el
angulo ¢ es el que describe la rotacién del Sol respecto a la Tierra ya que depende
de w. Por otro lado el dngulo 6, ecuacién (13), es el que nos indica la posicién del
“plano” en que rota el Sol respecto a la Tierra.

A
2z
% ___>
@ Y
x
Figura 5

Para hallar la velocidad angular con la que vemos rotar al Sol, derivamos (14)
con respecto al tiempo y operando

~ B cos o
¢ =-w+
1-sen’ o sen*f (15)
usando (3) en (15)
- k cos o1+ ¢€ cos B )?
¢=-w+ (16)

2 2
1—sen“a sen” 3

100



REVISTA DE LA FACULTAD DE CIENCIAS - UNI

Ahora hallaremos los puntos donde esta velocidad angular toma sus valores
extremos. Derivando la ecuacién (16), igualdndola a cero y simplificando

— g sen B(1—sen’a sen*B )+(1+¢ cosB) sen*a sen B cos =0 (17

se observa que cuando [ toma los valores de 0 (punto Vi de la figura 6) y 7 (punto
V) la ecuacién se anula, entonces son soluciones de la ecuacion (17). Para buscar
otras soluciones asumimos f diferente de 0 y 7, entonces la ecuacién se puede
reducir a

cos B =€ ctg’c (18)
como se sabe que € = 0,017 y o = 23,5° entonces
cos B = 0,089 (19)

de aqui encontramos otras dos soluciones para B : 84,84° (Vo) y 275,16° (Va).

Por tltimo para encontrar el intervalo en que se mueve el plano de rotacion
del Sol en la esfera celeste, podrfamos derivar con respecto a f3 la ecuacién (13)
e igualar a cero, siguiendo el mismo procedimiento anterior; pero un poco de analisis
nos facilitara las cosas. En la misma ecuacién (13) el menor valor del
angulo O (7/2 — ) se da si  es 7/2 (punto Py de la figura 6); y su mayor valor
(/2 + ), si B es 3m/2 (punto P»).

Y
P, &
vy 0 v,
L,
P,
V,

Figura 6
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Conclusiones

Hemos encontrado las ecuaciones que describen la posicién del Sol en la esfera
celeste (13) y (14). Como era de esperarse las ecuaciones de 6 y de ¢ dependen de
la posicién de la Tierra respecto al Sol (debido al dngulo f). De estas ecuaciones
obtuvimos que 6, que determina la posicién del “plano” de rotacién del Sol, pertenece
al intervalo [71/2 ~a, /2 + «], donde « es la inclinacién del eje terrestre. Se ha
colocado la palabra plano entre comillas: porque en realidad la trayectoria del Sol
en ninglin momento pertenece a un plano. Se ha utilizado este recurso porque es
mds facil visualizar que el Sol estd rotando en un plano en movimiento. En realidad,
la proyeccién de esta trayectoria en la esfera celeste es mds como un helicoide,
estando nosotros en el centro de ella.

Ademds hemos hallado la expresién de la velocidad angular de rotacién del
Sol, ecuacién (16). Se observa que al esperado valor de —m se le suma un término
correctivo que depende de la posicién de la Tierra respecto al Sol. Por ltimo los
lugares donde esta velocidad angular toma sus valores extremos estin especificados
en la figura 6.
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Medidas SEEING
en el observatorio
de Huancayo

e SFRAD

Antonio Pereyra'-?, Nobar Baella’

RESUMEN

Presentamos medidas preliminares para la determinacion del seeing
(calidad de cielo) para observaciones astronémicas en el observatorio de
Huancayo. Medidas de perfiles estelares son utilizadas para cuantificar el

seeing y es mostrada su dependencia con la masa de aire. Un valor promedio
representativo de 2.71” es encontrado con un valor minimo medido de 1.76".
Las medidas fueron realizadas usando una cdmara CCD.

ABSTRACT

We present preliminary determinations of seeing for astronomical observations
at the Huancayo's Observatory. Measurements of star profiles are used to
quantify the seeing and is showed its dependence with airmasses. A
representative mean value of 2.71” is found with a measured minimum value

of 1.76". The measurements were made using a CCD camera.

' Grupo Astronomia - Facultad de Ciencias, Universidad Nacional de Ingenieria, Lima, Peru

nobar _octa@yahoo.com
2 Instituto de Astronomia, Geoffsica e Ciéncias Atmosféricas, Universidade de Sdo Paulo, Sdo Paulo,

Brasil. antonio @astro.iag.usp.br antonio@astro iag.usp br,
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Introduccién

El conocimiento de los factores meteorolégicos y climdticos, de los cuales
depende la calidad de imagen de los objetos astronémicos, es imprescindible en la
eleccion de un determinado lugar que tenga previsto la instalacién de instrumentos
opticos astrondmicos. En general, los factores a evaluar son el grado de turbulencia
atmosférica (seeing), la transparencia de la atmésfera y el nivel de luminosidad del
fondo de cielo nocturno.

El frente de onda proveniente de un objeto celeste se deforma
fundamentalmente en las capas bajas de la atmdsfera, cercanas al suelo (capas de
inversion), bien sea por el calentamiento de ellas (por el dia) o por el enfriamiento
(por la noche). Esto causa que se forme un gradiente de temperatura que es el
responsable de la variaci6n espacial y temporal del indice de refraccion, que ocasiona
asi la deformacidn del frente de onda. La calidad de imagen puede estar afectada
por cambios de posicién, de tamafio y de intensidad (centelleo). En las cumbres
aisladas y mesetas elevadas, el espesor de esa capa de inversién de temperatura puede
alcanzar varias decenas de metros, mientras que en los valles y depresiones varios
cientos de metros. De ahi que estos tltimos lugares no sean buenos para la instalacion
de telescopios. Ademds, el aire que baja por las laderas de las elevaciones hacia valles
y depresiones causa una turbulencia adicional que es perjudicial para la calidad de
la imagen. Por la existencia de heterogeneidades de temperatura cercanas al suelo
es que los telescopios se elevan algunos metros sobre éste. En las capas altas de
la atmosfera (tropopausa) también ocurren fluctuaciones de la densidad y del indice
de refraccion del aire, pero los gradientes son menores que en las capas cercanas
al suelo, por lo que no causan el cambio de tamaiio de las 1méagenes, sino solo el
centelleo y el cambio de posicién (vibraciones) de las estrellas.

En el foco de un gran telescopio los efectos de turbulencia atmosférica forman
rapidamente imdgenes speckle. Una imagen de Jargo tiempo de integracién es el
resultado de la suma de un gran niimero de imégenes speckle aleatorias. Esto resulta
en que un perfil estelar (caracterizado por su ancho total a media altura, full witdh
at half maximum, FWHM), y que cuantifica al seeing, presente FHWM tipicos de
0.5 a 2 segundos de arco para un buen sitio de observacidn.

El modelo patrén para seeing astronémico, desarrollado por Tatarski (1961)
[1] y Fried (1965)[2], estd basado en el trabajo de Kolmogorov (1941)[3] sobre
turbulencia atmosférica. El andlisis ha sido revisado en detalle por Roddier (1981)[4].
El resultado crucial es que la propagacién de la turbulencia en el modelo de
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Kolmogorov estd dado por la funcién de estructura D,(r) de las perturbaciones de
la fase del frente de onda p(r) y que depende de la escala de separacion r segun.

Dp(r)y = <[p(r’) - p(r-nN?> = 6.88 (Jr{/ro)>”

donde la escala de longitud rg es conocido como el parametro de Fried, y es una
medida de la intensidad de las distorsiones del seeing. Para esta funcién de estructura,
el seeing limita las FWHM en integraciones largas y para un telescopio con didmetro
mucho mayor que rg, segun:

FWHM = 0.98 A/ ro(z) (1)

donde A es la longitud de onda de la observacidn, y ro(z) indica la dependencia de
ro con la distancia cenital, z. Es importante notar que la FWHM observada serd igual
a la predicha por la ecuacién 1 solamente si no hay contribucién al ensanchamiento
de la imagen debido a otras fuentes tales como la desfocalizacién del telescopio o
errores en el acompafiamiento sideral. Para comparar medidas de seeing a diferentes
z, debemos corregir el FWHM observado considerando que:

ro(cenit) = ro(z) sec(z)?®

Con lo cual de la ecuacidn (1) tenemos:

FWHM = 0.98 A sec(z) %6 / ry (cenit)
o< sec(z) 00 (2)

o bien,

FWHMCO“CgidO = FWHM opservado / s€C (2‘,)0'6 (3)

Para z < 60°, podemos usar la aproximacién plano-paraleia de la atmdsfera,
donde la masa de aire X queda definida asi:

X = sec (2) 4)
siendo,

sec z = (sin ¢ sin § + cos ¢ cos § cos H)! (5)

y donde ¢ es la latitud del observador, § es la declinacién del objeto y A es el dngulo
horario del objeto.
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Datos observacionales

Las medidas fueron realizadas en el Observatorio de Huancayo (12°02°12”
latitud sur; 75°19°07” longitud oeste; 3300 msnm), localidad de Huayao, Huancayo,
durante la noche del 17/18 de Septiembre de 2001. Fue utilizado un telescopio
Schmidt-Cassegrain de 8” de apertura (Celestron Celestar 8), de razén focal f110,
instalado sobre una montura ecuatorial tipo horquilla dentro de la ctipula automdtica
del observatorio. Una camara CCD (SBIG ST-7E)3 fue adaptada al foco del
telescopio donde son formadas las imagenes estelares. La cdmara posee un chip
Kodak KAF-0401E (765 x 510 pixeles) con un tamafio de pixel de 9 x 9u y que
para la distancia focal del telescopio (F = 2032 mm) proporciona una escala de placa
de 0.91”/pixel. El campo total de cielo cubierto por el CCD es de 12' x 8'. El sistema
de enfriamiento termoeléctrico de la cdmara trabaja a 25° por debajo de la temperatura
ambiente, la cual fue de aprox. 10° C al comienzo de la noche.

Las medidas fueron realizadas usando los filtros U, By V en las bandas
ultravioleta, azul, y visual, respectivamente, del sistema fotométrico J ohnson-Morgan.
Los filtros fueron instalados en una rueda automética (CFWS8) que permite un rapido
intercambio de filtros durante las observaciones. La cdmara CCD como la rueda de
filtros son controlados a través del software de control CCDOPS (ver. 4.12-NT)
instalado en una computadora portétil y donde la conexién es hecha usando el puerto
paralelo. Las imdgenes digitales generadas son almacenadas convenientemente para
su posterior procesamiento.

Se presentaron algunos inconvenientes en la observacién de estrellas en masas
de aire mayores. Por un lado el 4rea efectiva disponible de la abertura de la cipula
limita la observacién a alturas pequefias sobre el horizonte Y, por otro, €l poco espacio
disponible en la montura tipo horquilla para la colocacién de la cdmara CCD mas
la rueda de filtros también limita el mismo tipo de observacién.

El sistema telescopio, cdmara y rueda de filtros fue contrapesado
convenientemente para permitir una facil localizacién de las estrellas a estudiar. La
localizacién de los objetos estelares fue hecha manualmente utilizando un buscador
de 7 x 50 (pequefio telescopio de 7 aumentos y 5 cm de apertura) y por comparacion
con cartas estelares electrénicas. Imdégenes de calibracién de flat field en cada filtro
y dark current fueron tomadas al comienzo y al final de la noche.

3 http//www.sbig.com (Santa Barbara Instrument Group, Inc.)
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Fueron observadas un total de 7 estrellas de tipo AO (o aproximado) en varias
masas de aire. En cada filtro (U, B y V), fueron tomadas imdgenes individuales para
cada estrella. La Tabla 1 lista las estrellas observadas. En la columna (1) esta el
ndmero de observaciones realizadas. Todas las estrellas fueron observadas en una
Ginica secuencia de filtros a una determinada masa de aire, excepto las estrellas SAO
144150 (observaciones 3 y 4) y SAO 146044 (observaciones 6 y 7) que fueron
observadas en dos masas de aire diferentes. En la columna (2) estd el nombre de
la estrella respectiva segin el catdlogo SAO*; en las columnas (3) y (4) estdn
indicadas la coordenadas ecuatoriales (2000) para cada objeto; la columna (5) indica
el tipo espectral de cada estrella segiin la base de datos astrondmica SIMBAD’ ; la
columna (6) indica el filtro utilizado; las columnas (7) y (8) indican la fecha y hora
local de la observacién; la columna (9) muestra la masa de aire (X) calculada, para
la posicién del objeto al momento de ser observado; la columna (10) muestra el valor
de seeing observado (FWHM,ys) medido para cada objeto en segundos de arco; v,
finalmente, la columna (11) muestra el seeing corregido por la masa de aire
(FWHM.:) segin la ecuacion 3.

Los tiempos de integracién (TI) para todas los estrellas listadas en la Tabla
1 fueron de 1 segundo en los tres filtros. Las estrellas escogidas eran mas brillantes
que 6ta. magnitud para que integraciones rdpidas puedan realizarse. Problemas en
el motor de acompafiamiento sideral y en el alineamiento polar actual no permiten
hacer integraciones largas para objetos a distancias cenitales grandes.

4 Smithsonian Astrophysical Observatory Star Catalog
5 http://simbad.u-strasbg.fr/Simbad
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Tabla 1. Lista de estrellas observadas.

observacién estrella A. Rixom Dec.oom T.E. filtro dia hora X fivhmos  fivhmes
1 ) 3) ) &) (6) ) ®) &) (10 an
SAO .
1 o 022809.54 +082736.2 B9 U 09/18/2001 01:53:28 1.0226 4.16 3.95

B 09/18/2001 01:51:54 1.0240  2.88 2.74
V. 09/18/2001 01:48:43 1.0271 2.85 2.70

2 1;\724 174753.56 +0242262  AOV U 09/17/2001 22:02:34 2.0302 5.06  3.23
B 09/17/2001 22:00:35 2.0004 395  2.54
V. 09/17/2001 21:58:26 1.9693 378 2.46
3 A0 1829 0049173 BO.SHL U 09/17/2001 21:32:55 1.0736 410  3.95
144150
B 09/172001 21:37:16 1.0802 391  3.75
V. 09/172001 21:39:10 1.0832 4.06  3.88
4 U 09/1872001 00:13:49 19111 333  2.27
B 09/1872001 00:12:13 1.8903 339 233
V09182001 00:09:29 1.8561 329  2.29
5 A0 0474055 0929 4438 ALV U 091772001 21:18:36 1.0783 2.83  2.82
144810
B 09/17/2001 21:17:00 1.0778 4.50  4.49
V09172001 21:15:24 1.0772 329 329
6 SAO o193 23144  AOV U 09/172001 22:40:19 1.0284 3.69  3.65
146044 -
B 09/17/2001 22:37:58 1.0282 390  3.86
V. 09/17/2001 22:34:24 1.0280 334 331
7 U 09/182001 00:33:49 1.1870 3.57 324
B 09/1872001 00:32:22 1.1826 2.64  2.40
Vo 09/182001 00:30:45 1.1779 271  2.48
8 SAO55397 02155628 +3321320 AOV U  09/18/2001 01:1821 1.1186 3.79  2.97
B 09/1872001 01:16:48 1.1207 2.53 198
V0971822001 01:14:40 1.1236 226 176
9 SAO55427 021718.87 +3350499 AlVan U  09/18/2001 01:08:50 1.1382 415  3.19
B 09/182001 01:06:59 1.1411  3.07 236

—
~

09/18/2001 01:05:13 1.1441 296 2.27
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Reduccion y analisis de datos

El proceso de reduccién y andlisis de las imdgenes digitales fue realizado en
el sistema operativo Linux RedHat 7.2, usando el ambiente JRAF® [4,5]. Después
de la correccién rutinaria de darks y flats sobre las imdgenes, se procedi6 al célculo
de las masas de aire para cada imagen.

Para el correcto calculo de las masas de aire, es necesario actualizar los valores
correctos de la fecha de observacién, hora local (local time, LC), tiempo sideral
(sideral time, ST) y coordenadas ecuatoriales con su época respectiva del objeto
observado. Con estos valores y conociendo las coordenadas geograficas del sitio de
observacién, la masa de aire puede ser calculada, por ejemplo, utilizando la rutina
setairmass’ de IRAF. Los valores de la columna (9) de la Tabla 1 fueron calculados
de esta manera. Esta rutina estd basada en la ecuacién 5.

El siguiente paso es analizar los perfiles estelares para determinar el fiviim
en cada imagen de cada estrella. La Figura 1 muestra una imagen estelar tipica (Fig.
1, arriba) producida por el CCD. El perfil estelar (Fig. 1, abajo) es construido
graficando los valores de intensidad de los pixeles alrededor del centroide (que define
el pico de intensidad) en funcién de la distancia radial. Los puntos representan los
valores de los pixeles y la curva es el mejor ajuste de una gaussiana a los datos que
permite construir la FWHM. Para esto se ha usado la rutina daoedit® de IRAF. El
seeing observado medido de esta manera y el valor corregido (seglin ecuacion 3)
estan indicados en las columnas 10 y 11 de la Tabla 1. Los histogramas de la Figura
2 representan la distribucién del seeing medida en cada uno de los filtros. Los valores
minimos, maximos y promedio en cada filtro estdn mostrados en la Tabla 2. Es notorio
que los menores valores son encontrados en el filtro V. Esto es consistente con el
hecho que la focalizacion fue hecha en este filtro y por consiguiente las imagenes
deben estar ligeramente desenfocadas en los filtros U y B, lo que se traduce en un
seeing mayor en estos filtros.

6 |RAF (Image Reduction and Analysis Facility), es un sistema de software de propdsito general para la
reduccion y andlisis de datos astronémicos. IRAF es escrito por el IRAF programming group (hitp://
iraf.noao.edu) en NOAOQ (National Optical Astronomy Observatories) en Tucson, Arizona. NOAO es
operado por AURA (Association of Universities for Research in Astronomy, Inc.) bajo acuerdo cooperativo
con la NSF (National Science Foundation).

7 selairmass es rutina de noao.astutil

8 daoedit es rutina de digiphot.daophot
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Figura 1. (arriba) Ejemplo de una imagen estelar sobre el CCD;
(abajo) Perfil radial para la imagen estelar y ajuste de gaussiana
para obtener la FWHM.
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Figura 2. Histogramas de los valores de seeing (corregidos por la masa de aire) para las

medidas en los tres filtros: U, By V. La abcisa estd en segundos de arco.
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Tabla 2. Estadisticas de los valores de seeing corregidos (por la masa de aire)
para cada filtro. Todos los valores estdn en segundos de arco.

minimo mdximo promedio
U 2.27 3.95 323
B 1.98 4.49 2.94
V 1.76 3.88 2.71

Para verificar la dependencia del seeing con la masa de aire (ecuacién 3)
graficamos el logaritmo de los valores de seeing observados - log (fwhmgys) - vs.
log (X) y hacemos un ajuste lineal para determinar si la pendiente es consistente
con el coeficiente 0.6 de la ecuaci6én 3. Las Figuras 3,4 y 5 (izquierda), grafican
esta dependencia para todos los valores de la muestra. Una simple inspeccién nos
indica que para masas de aire pequeiias el ajuste falla, pues valores altos de seeing
son encontrados. Esto es mds notorio en los filtros B y V. Para descartar el efecto
de variabilidad aleatoria de la transparencia (efecto de paso de nubes pasajeras, por
ejemplo), que pueda alterar las medidas en una secuencia tipica de filtros para un
objeto determinado, nos valemos de la informacién contenida en los tres filtros para
cada objeto medido. Como quiera que la focalizacién fue realizada en el filtro V
y es de esperar que, el filtro B presente menos desfocalizacién que el filtro U,
procedemos a eliminar de la muestra aquellos objetos que presenten una patrén
diferente a fwhmy < fwhmg < fwhmy. Después de utilizar este criterio de filtrado

0.70 + ° 0.70 ~ o
065 065 e
e® ° o T °
—~ 0.60 — 060
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§ ° & °
£ . £
o 055+ ° o 055
o o
L
050 050
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log (X) log (X)

Figura 3. (izquierda) Dependencia log (fwhm) vs. log (X) para todos los datos de la muestra
tomados con el filtro U. (derecha) Ajuste lineal para datos filtrados. El valor calculado
para la pendiente es 0.29888 + 0.23695.
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Figura 4. (izquierda) Dependencia log (fiwhm) vs. log (X) para todos los datos de la muestra
tomados con el filtro B. (derecha) Ajuste lineal para datos filtrados. El valor calculado
para la pendiente es 0.48629 + 0.36464.
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Figura 5. (izquierda) Dependencia log (fivhm) vs. log (X) para todos los datos de la muestra
tomados con el filtro V. (derecha) Ajuste lineal para datos filtrados. El valor calculado para
la pendiente es 0.43954 + 0.49242.

apenas 4 objetos sobreviven en la muestra (observaciones 1, 2, 8 y 9) y 5
objetos son eliminados (observaciones 3, 4, 5, 6 y 7). Los ajuste lineales respectivos
son mostrados en las Figuras 3, 4 y 5 (derecha). La pendiente obtenida en el filtro
U (0.30 + 0.24) est4 bastante lejana del valor esperado. Por otro lado, los ajustes
en los filtros By V ( 0.49 = 0.36 y 0.44 + 0.49, respectivamente), se encuentran
en razonable concordancia con el valor esperado considerando los errores obtenidos.
De cualquier manera, queda claro que la cantidad de datos utilizados es bastante
reducida y se hace necesario méds medidas para verificar los valores encontrados.
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Conclusiones

Una primera tentativa de medicién de seeing en el Observatorio de Huancayo,
usando una cémara CCD fue realizada. Los perfiles estelares caracterizados por la
FWHM usados para las medidas de seeing, proporcionaron valores medios de 3.25”,
2.94” y 2.71” medidos en los filtros U, By V respectivamente. Las medidas en los
filtros U y B sufrieron de ligera desfocalizacién por lo que las medidas en el filtro
V son mis representativas. Es interesante notar que un minimo del orden de 1.76”
fue medido en este filtro. Por otro lado, es bueno hacer notar que, a pesar de haber
utilizado integraciones rédpidas (1 seg.), es probable que problemas en el acom-
pafiamiento sideral de la montura utilizada asi como en su alineamiento polar pueden
haber condicionado a tener valores altos de seeing. Las condiciones atmosféricas
durante la noche de observacién estuvieron lejos de ser ideales, y variaciones en
la transparencia del cielo (nubes pasajeras) estuvieron presentes. Una tentativa de
caracterizar la dependencia del seeing con la masa de aire resulté en un pobre ajuste
en el filtro U y apenas razonable en los filtros B y V, cuando son comparados a los
valores previstos. Un mayor nimero de medidas bajo condiciones de cielo fotométrico
se hacen necesarias para caracterizar mejor las medidas de seeing en el sitio.
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{1 error Inmicial

PXir e

H. G. Valqui *

RESUMEN

En 1935, Einstein y sus alumnos, plantearon una funcién de estado para el
caso de dos particulas que habian cesado de interactuar entre si. De dicho
planteamiento nacié la llamada paradoja EPR, segin la cual entre dichas
particulas existia un “enlace fantasmal”, tal que una medicién sobre una de las
particulas afectaba el estado de la otra particula. De alli coligié Einstein que la
mecanica cuantica era una teoria incompleta. En el presente articulo muestro la
raiz del error cometido en el planteamiento de la funcién de onda.

ABSTRACT

1935, Einstein. Podolski and Rosen presented a function representing the state
of two particles which no longer interacted with each other. From that
representation was born the so called EPR-paradox, according to which there
is some sort of a ghost entanglement between both particles such that a
particular measurement on one of the particles changes the state of the other
one. Consequently, so Einstein, quantum mechanics is not a complete theory.
In this article I show where is the root of the mistake made by constructing

the state function.

Al considerar la ecuacién de Schroedinger para dos particulas, C; y C;, que
no interactdan entre si (), la funcién de estado W que describe el comportamiento
simultdneo de ambas particulas puede ser escrita como el producto de las funciones
de estado ¥ y m, de cada una de las particulas, es decir, Y(x;, x2) = x(x;) N(x2).

* Facultad de Ciencias / UNI.
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Pero ésta seria solamente una solucién particular ; la solucién general es la
combinacion lineal de todos los productos posibles, es decir,

Yx1, x2) = Xij aij i (x1) mj (x) (1]
donde, para cada situacién fisica bien determinada los coeficientes a; j quedaran
fijados por las condiciones iniciales y las posibles condiciones de contorno del caso

(en la presente situacién no existen condiciones de contorno por tratarse de particulas
libres).

Clasifiquemos los coeficientes a;; en dos clases excluyentes:

1) Para todo par de indices i , J » existen dos nimeros b; , ¢j , tales que se
puede escribir, aij=b; c;.En este caso diremos que los estados de C,
y de C; son independientes.

i1) Para todo par de indices i , J » NO existen dos nimeros b; , ¢j , tales que
se pueda escribir, aj; = b; ¢; . En este caso diremos que los estados de
C; y de C, se encuentran enlazados.

[) Estados independientes. En este caso podemos escribir

Pxi, x2) = Zij bi ¢ % (x1) M (%2) = Wi(x1) Wa(x2), donde Wy = ¥ by Xk V2 =
2k Ck Mk

Nétese que aqui podemos referirnos al estado de C; | independientemente del estado
de C; , y reciprocamente.

Por otra parte, si, por ejemplo, sobre la particula C; se realizase alguna
medicion particular (no un proceso de medicién) de un observable fisico representado
por el operador Q, cuyo resultado fuese el nimero A, entonces, de acuerdo con el
modelo cudntico, el estado de C; sufrirfa un salto

Y —— 0, donde Qd=r¢
Como consecuencia de ello, también la funcién de estado comun sufrird el salto

W=y y2— ¢y, 6, si se prefiere, W(xy, X2) =y (X)) Walxy) —— O(x1) Yax2)
donde el salto del estado de C; no ha influido sobre el estado de C,.
Por supuesto que si sobre la particula C, se realizase alguna medicién particular,

esto produciria el salto del estado de C; , sin que sea afectado el estado de C .

De otro lado, se puede demostrart® que si en un instante dado, el estado comin
a dos particulas libres — como es el caso aqui considerado — se puede expresar como
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el producto de los estados de las dos particulas en tal instante ; entonces, tal situacion
se mantendra vélida para todo instante posterior.

I1) Estados Enlazados. En este caso propiamente no tiene sentido hablar del estado
de la particula C; o de la particula C;; solamente existe el estado comun a las dos
particulas. Por ejemplo, no puede hablarse del ‘peso’ que tiene el estado xn, de Ci,
en la descripcién del estado comiin, porque dicho ‘peso’ deberia estar expresado
por un tnico coeficiente, y aqui estaria representado por todos los coeficientes O,
es decir, para todo valor del indice j.

La situacién de enlazamiento no causa ninglin problema de entendimiento
cuando las dos particulas se encuentran una muy cerca de la otra, como es el caso,
por ejemplo, con la funcién de spin de los dos electrones de un dtomo de helio ;
aqui, si bien es cierto que (se asume) no existe un potencial (magnético) de
interaccién entre los dos electrones, en cambio los electrones no son libres, pues
ambos estdn sometidos al potencial del niicleo.

El asunto es diferente cuando las particulas estdn alejadas, una de la otra. En
este caso, no existiendo interaccion entre ellas, se esperarfa que cualquier accion
sobre una de las particulas no afecte al estado de la otra particula. Sin embargo, la
expresién del estado en la forma [1] puede representar tanto estados independientes
como estados enlazados. Aqui debemos tener presente que las férmulas o las
ecuaciones matemdticas pueden no representar situaciones fisicas reales (como es
el caso, por ejemplo, con el oscilador arménico para energfas potenciales muy altas);
siendo indispensable un cuidadoso andlisis de interpretacién por parte de los fisicos
(pues también existen casos, como es el del positrén, donde la solucién matematica
parece no tener sentido fisico, cuando en realidad se trata sélo de limitaciones de
interpretacién, por falta de informacién experimental).

;Cémo saber si una funcién de estado, comun a dos (o mds) particulas debe
representar estados libres o deba representar estados enlazados? Aqui debemos tener
presente que la funcidn de estado [1] estd representando el estado de dos particulas
bien determinadas, donde se conocen los coeficientes ;. Conociendo dichos
coeficientes ya sabemos si se trata de estados independientes o estados enlazados.

. Cémo se determinan los valores de los coeficientes Ci;?

Aqui se pone en evidencia que la representacion [1] del estado comin a dos
particulas libres es deficiente; la funcién de estado debera depender del tiempo,
Y(x], X2, 1) , y deberd ser solucién de la ecuacién de Schroedinger

- (h22m))V 1 2¥ - (h?2my)V*Y + d¥/dt = 0 [2]
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No existiendo potencial de interaccién se puede ensayar la separacién de
variables y(x; , x5 , t) = xX(xin(xz) f(t) , que reemplazada en [2] genera las tres
ecuaciones

-(P2mpViZy = By, - (B2m)VRn =By, (i) f° = - (Ei + Ey) f

donde E; y E; son constantes arbitrarias.
Para las ecuaciones anteriores podemos ensayar soluciones de las formas
X(x1) = exp(i koxy) , ng(x2) = exp(i goxy) , f(t) = exp[- i w (]

que introducidas correspondientemente en las ecuaciones dan las condiciones
que deben satisfacer las constantes: Ey = (hk)?2m, , E, = (hq)’2m; , E| + B, =
h w(k, q), donde los vectores k , q son totalmente arbitrarios (y las otras constantes
Ei, E2, w se expresan en funcién de dichos vectores). Ahora, todos los miembros
de la familia biparamétrica

Wkq (X1, X2, ) = exp[i (kox; + qox; - i w(k , q) t ] [3]

son soluciones particulares de la ecuacién [2].
La solucién del problema fisico en consideracién se obtendrs como una
combinacién lineal de dichas soluciones particulares:

Plxi, xe, 0 = (12177 [k dq Dk , q) expli (kox; + qoxs - wik , q) t ] [4]

donde para conocer la funcién de estado es necesario conocer los coeficientes ®.
Del estado inicial, ¥W(x; , x5 , 0) = (1/27)3? [d3k d*q Dk , q) expl[i (kox;
+ qex; | podemos apreciar que @ es la transformada de Fourier de ¥, , donde
Wo(x1 , x2) = W(x1 , X2, 0) ; es dectr,
Ok, q) = (12m)*2 [dx ddy ¥(x; , x5 , 0) exp[- i (kox + qox ]

Es decir, para determinar la funcién de estado (y con ello saber si se trata de un
caso de estados independientes o de estados enlazados) es necesario conocer el
estado inicial comin ¥(x, , x, , 0).

Pero también existe la alternativa experimental para saber si las dos particulas
s¢ encuentran en estados enlazados: actuar sobre una de las particulas y verificar
st la otra particula resulta afectada. Pero estas acciones sobre objetos microscépicos
son indirectas y los resultados deben ser cuidadosamente interpretados a la luz de
un conjunto de asunciones no necesariamente transparentes. Este es un tema que
tratar€ en una préxima ocasién. Ahora paso al tema del titulo.

En 19350, para representar la funcién de estado de dos particulas libres,
Einstein procedié como sigue:
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Sean u;(xy) , us(xy), us(xy), ... los estados propios de un observable A
de un sistema C; , donde x; es la variable que describe el primer
sistema. La funcidén de estado \, considerada como una funcién de x,
puede ser expresada asi
W(X1 , X2) = 2k Ok(x2) ux(x1)

donde x; es la variable que describe el segundo sistema. Aqui los 0x(x2)
deben ser considerados simplemente como los coeficientes de la
expansién de y en una serie de funciones ortogonales ux(x1).

Es decir, Einstein usé una funcién de estado que es un caso muy particular
de [1], donde oy = & , para todos los fndices i, j, lo cual necesariamente implica
un estado enlazado.

La funcién de estado planteada por Einstein tiene dos consecuencias
significativas:

i) Considerando que los estados de las dos particulas libres, alejadas una de
la otra, deberfan ser independientes y no enlazados, como resulta de la
particular eleccién de los coeficientes, Einstein concluyé que la Mecanica
Cudntica no podia ser una teoria completa, ya que no podia expresar la
independencia de los estados de dos sistemas que no interactian entre si
y estidn alejados el uno del otro.

ii) Actualmente existen muchos fisicos que sostienen la existencia de esos
estados enlazados, y creen contar con razones experimentales que
(interpretando adecuadamente los resultados experimentales) confirman la
existencia de los mismos.

Finalmente debo mencionar que este error de Einstein tiene actualmente
consecuencias de mucho peso en la concepcién de la Teoria Cudntica y de sus
aplicaciones. El error fue cometido en 1935, pero (segin este autor) nunca ha sido
considerado un error. En este sentido, cito como ejemplo, dos frases elocuentes de
dos respetados fisicos:

Clauser-Shymoni®: ”In our opinion the reasoning of EPR is impeccable, once....”
A.Aspect®: “I found it extremely clear and completely convincing, but there was
something special about this paper: it lead to two contradictory conclusions...”

NOTAS:

(M Sin que tenga ninguna importancia que dichas particulas, antes del instante considerado
como inicial, hayan estado interactuando entre si.

(2) Esta demostracién aparecera en un siguiente articulo.

@) Einstein, Podolski, Rosen, Can Quantum-Mechanical Description of Physical Reality
Be Considered complete? , Physical Review, 47 , 1935.

@) Clauser J. Shimonny A. , Bell’s theorem: experimental tests and implications, Rep.
Prog.Phys, Vol.41, 1978 (pdg.1886)

%) Aspect A., Testing Bell’s Inequalities, College de France et Ecole Normal Supérieure
(pdg 416), con fecha posterior a Abril 1991.

119



dicién, diagramacién e impresién por

ditorial HOZLO S.R.L.

Psje. Santa Rosa 191-501, Lima - Peru
Telefax: 428-4071

E-mail: GUZLOP@terra.com.pe

Esta edicion consta de 0500 ejemplares.

Lima, febrero del 2003.



INDICE

Raices y algebra de Lie semisimples diagramas de Dynkin
Aldo Arroyo Montero

El método de Newton (amortiguado) para desigualdades variacionales.

Hermes Pantoja y William Echegaray

Una prueba general de la buena definicién del método lagrangeano
aumentado.
Yna Consuelo Rezza Espinoza

Peliculas de 6xidos mixtos de cobre y tungsteno obtenidas por

Sol-gel: caracterizacién estructural y evaluadas como sensor de vapor.
Angélica Damidn Briones, Yovan Rodriguez Daga,

José Solis, Walter Estrada

Funciones de Green para un problema del electromagnetismo.
Carlos Enrique Valcdrcel Flores

Cristalografia Césmica.
Armando Bernui

El Sol visto desde la Tierra.
Daniel Reyes

Medidas de SEEING en el observatorio de Huancayo.
Antonio Pereyra y Nobar Baella

Il error inicial.
H.G. Valqui

19

38

58

70

77

95

103

115



