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Presentacion

Desde el ano 1995 el Instituto de Investigaciéon de la Facultad de
Ciencias de la Universidad Nacional de Ingenieria ha publicado 11
ejemplares de la revista REVCIUNI. En ellos han colaborado varios de
nuestros docentes y alumnos con articulos donde reportan sus
investigaciones o difunden temas vinculados a las ciencias béasicas y
aplicadas.

El nimero de REVCIUNI que ahora presentamos, tiene algunos
cambios formales. Un nuevo disefio en las tapas con mayor variedad de
color, asi como la inscripcién del volumen y el nimero en el lomo, para
una mejor identificacién. En cuanto a la tematica no han habido
modificaciones, la revista acoge trabajos de investigacién concluidos o en
ejecucion, tesis de antegrado y postgrado y articulos de divulgacion
especializada. En este niimero, se incluyen temas de fisica aplicada y de
matematicas.

La publicacion de la Revista de la Facultad de Ciencias de la UNI
tiene como objetivo principal la difusién de las investigaciones que se
realizan en nuestra facultad. Tales investigaciones estan reflejados en
trabajos relacionados con las tesis licenciatura y trabajos de maestria, asi
como tambien resultados importantes de investigacion cientifica de los
profesores de la facultad. En la rcvista se incluye tambien trabajos de
divulgacién cientifica.



En este numero se destacan los resultados importantes de las
investigaciones del profesor Holger Valqui relacionados con la paradoja
de Einstein-Podolsky-Rosen. El trabajo de Juan Carlos Rojas que fue
preparado en colaboracién con el Instituto de Balseiro de Argentina.
Tambien sobresalen los trabajos de proyecto de tesis de Wilfredo Caldas,
Oscar Miculicich y el trabajo de Joseph Wilmer relacionado con su tesis
de licenciatura. Se incluye tambien el exelente trabajo del profesor Renato
Benazic sobre la teoria de funciones de varias variables complejas.

Sabemos que el habito de la escritura es inherente al investigador
y la principal herramienta de difusién institucional, por ello el Instituto
de Investigacién considera prioritaria la publicacién de la revista de la
Facultad y respalda su edicién con la frecuencia que el editor considere
necesaria.

En el esfuerzo por mejorar cada edicién de REVCIUNI contamos
con su colaboracién, la fortaleza de una institucién esta en el nivel de
participacién de quienes la conforman, por ello estamos dispuestos a
recibir sus aportes y sugerencias.

Dr. Abel Gutarra Espinoza

Director del Instituto de Investigacién
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La ecuacion de Dirac
y la invariancia relativista

Wilfredo Caldas - Orlando Pereyra*

RESUMEN

Una descripcién correcta de la mecanica cuantica debe de cumplir con los
principios de la relatividad especial, es decir, debe de ser covariante. Luego de
una breve introduccién histérica sobre la formulacién final de la ecuacién
relativista del electrén, denominada ecuacién de Dirac, resolvemos dicha ecuacion
para el sistema en el cual el electréon esta en reposo y usando la invarianza
relativista hallamos la solucién para un sistema de referencia inercial arbitrario.
Para este fin construiremos previamente el operador que transforma las funciones
de onda de un sistema a otro.

ABSTRACT

A correct description of the quantum mechanics should be
complete with the principles of the special relativity, that is to say,
it should be covariant. After a brief historical introduction on the final
formulation of the relativistic equation of the electron, called Dirac’s equation, we
solve this equation for the rest frame ard using the covariance we find the
solution for a moving frame relative to the rest frame. For this purpose we will
construct, previously,
the operator that transform the wave functions of a

one frame to another.

*Grupo de Fisica Tedrica, Facultad de Ciencias - Universidad Nacional de Ingenieria.
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1. Introducciéon

Los principios de la mecanica cuéntica y la relatividad especial sirven
de base para la construccién de una ecuacién de onda covariante, es decir
una ecuacion de onda invariante ante transformaciones de Lorentz, dicha
ecuacion como hizo notar Landau [1], no seria una simple generalizacién
de la ecuacién de Schrédinger.

En general, el concepto de funcién de onda no tiene sentido en
mecanica cuéntica relativista y sélo es posible hablar de ella en el caso
de una particula libre, donde la cantidad de movimiento p es constante,
dicha afirmacién esti relacionada con la imposibilidad de realizar
mediciones de la cantidad de movimiento en un intervalo de tiempo
arbitrariamente corto, debido a que la méxima velocidad de medicién es
la velocidad de la luz, lo cual haria imposible que el tiempo de medicién
sea arbitrariamente corto, hecho esencial si se quiere construir una
funcién de onda y (p) portadora de toda la informacién del sistema
cuantico. Esta imposibilidad de considerar a la ecuacién de Dirac como
una ecuacién de onda fue establecida en [2] debido a que la ecuacién de
Dirac no es una ecuacién de probabilidad sino una ecuacién de campo.
La apariciéon de estados de energia negativa resultan como consecuencia
de considerar sino una ecuacién de campo. La aparicién de estados de
energia negativa resultan como consecuencia de considerar a ¥ como una
funcién de onda y no como un campo cuantico donde los Wy son
operadores de creacién y aniquilacién y no simples funciones.

En mecénica cuéntica, los estados de los sistemas estan
representados por vectores normalizados | l//> de un espacio de Hilbert ,,
donde K(p | u/>(z es la probabilidad de encontrar el sistema en el estado |(p> :
Los observables fisicos son asociados a operadores auto-adjuntos A=A*
que actian sobre el espacio de Hilbert ,. El valor esperado del observable
A cuando el sistema esta en el estado [l//), es decir, el valor medio para
muchas medidas de estados preparados idénticamente es: <!//|AJIII> La
evolucién temporal del sistema estd gobernada por la ecuacién de
Schrédinger:

i1 2 |y(o) = Hyo), M

o equivalentemente:

W) =U, )| w(,)). (2)
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Donde H es auto-adjunto, U es unitaria y satisface:

ihéta—\U(tz,tl ))=H(t,)|U(ty,t))). (3)
2

Por otro lado, la Relatividad Especial establece que las leyes de la
naturaleza son independientes de los observadores, si los observadores son
de una clase especial de sistemas (sistemas de Galileo), relacionados entre
ellos por medio de una transformacién del grupo de Pincaré. Este grupo
es generado por translaciones espaciales y temporales, rotaciones
espaciales, transformaciones de Lorentz o rotaciones espacio-temporales
(boost), los cuales relacionan sistemas de referencia moviéndose con
velocidad constante. La velocidad de la luz c es absoluta y es la maxima
velocidad de cualquier senal. La informacion originada en (xy, tp) llega
Unicamente a los puntos (xj, t;) dentro del cono:

c2(t; —tg)? —(x;—x29)220 : t;—-t;,20. (4)
Esta ultima ecuacién es la expresion relativista de causalidad.

Para combinar la invariancia relativista con la mecanica cuantica
utilizaremos el principio de correspondencia. En la representacion usual

. . . . 1
del espacio de configuraciones, asociamos los operadores ih12 y " ;% con
la energia E y el momentum p' respectivamente.

Para una particula masiva libre, la energia estd dada en términos
del momentum mediante:

E? =p2c? + m2ci. (5)

En adelante utilizaremos el sistema denominado “natural” en el cual
h=c=1. La ecuacion aniloga a la ecuacién de Schrodinger
correspondiente a la energia relativista (5) se denomina ecuacion de Klein-
Gordon [3]:

(& V2 4 m?) (G, 1) = 6)

5 m?) y(x,t)=0. (

Si queremos interpretar a ¥ como una funciéon de onda,
encontramos que la probabilidad no es necesariamente positiva. La
ecuacion de continuidad implica:

3 pivisapen g
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donde hemos definido el cuadrivector j* =(j° = p,j*) como:

_ i 0y oy’

= i |
=——W'Vy -(Vy)'w). 8
I=5- W Vy -(Vy)'y) (8)
es decir, no podemos asegurar que p > 0.

Un segundo problema es la existencia de soluciones en ondas planas,
las cuales tienen la forma:

w(x,t) = A exp(ip-x —iEt). 9)
donde E? =p? +m?, es decir, aparecen soluciones con energia negativa
E=-\p?+m? ademas de las soluciones con energia positiva

E=\p? +m? .

2. La Ecuacion de Dirac

Dado que la ecuacién de Klein-Gordon es insatisfactoria fisicamente,
trataremos de construir una ecuacién de onda de la forma:
d S
%=(a'p+ﬁm)WEHW, (10)
donde y es un vector funcién de onda y @ y B son matrices hermiticas
de tal manera que H resulte hermitica también, lo cual garantizaria la

existencia de densidad de probabilidad positiva [3]!. Para la construccién
de esta ecuacién tendremos en cuenta estos puntos:

i

1. La ecuacién debe de ser covariante.

2. Las componentes de v deben satisfacer la ecuaciéon de Klein-

Gordon, asi que la onda planta con E2 =p2 +m? debe de ser
solucién.

' Lo que garantiza, en realidad, el signo tanto de la carga como de la energia es la manera
como se transforman los campos, es decir, s1 estos son espinores o tensores. La probabilidad
es definida positiva si el campo es espinorial pero la energia no, mientras que si el campo
es tensorial entonces la energia es definida positiva pero la probabilidad no [4].
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Dirac [5], encontré que las matrices ¢, y B deben satisfacer las
siguientes relaciones.

f,0,}=0, i#j, {0, B}=0, a?=p2=1 (11)
donde {A,B}= AB+BA se le denomina anticonmutador de A y B.

Es facil verificar que con las condiciones anteriores (10) es
equivalente a la ecuacion de Klein-Gordon

02

_sz(a.ﬁ+ﬁ,n)2 w=(-V2+m?) y. (12)

Introduzcamos ahora la notacién y#:
=B, y'=Ba* i=12,3, (13)

Entonces las matrices y# satisfacen la relacion:

{yu,yv}=2guv, (14)
donde, g#v =[1 -1 -1 -1], es la métrica de Minkowsky.

Si utilizamos estas definiciones y reescribimos la ecuacion (10),
obtenemos lo que llamaremos Ecuacién de Dirac:

oy (

iy V) wx)=0,  donde, x=(t7) (15)
ox*

Las matrices y# se denominan matrices de Dirac; la menor

dimensién [6] de estas matrices es cuatro, y pueden escribirse en funcién
de las matrices 2x2 de Pauli:

1 0 0 o
0 — 1= (16)
r o 4) e )

También existen otras formas de representar las matrices de Dirac
de manera tal que atin cumplan con (14), i.e. la representacién quiral:

0 _ 0 -1 1 _ 0 o
y _(_1 O)y _(—o" 0) an

donde i = 1..3
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3. Invariancia relativista

De acuerdo al principio de relatividad la ecuacién de Dirac mantiene
su forma en dos sistemas de referencia si éstos estan relacionados por una
transformacién de Lorentz, consideremos A dicha transformacién,
nuestro sistema fisico sera descrito por una funcién y en el primer sistema
y por ¥’ en el sistema transformado, ambas satisfacen la Ecuacién de
Dirac:

. ov(x)

iy Fyo my(x)=0 (18)
iy H o (’x ) -my’(x’)=0 donde x'=Ax. (19)
ox’H

Existe una relacién local entre wy ¥’ de tal forma que el observador
en el segundo sistema de referencia pueda reconstruir ¥’ si conoce v,
asumamos que esta relacién es lineal:

y'(x) =S(Ay(x), (20)

S(A) es una matriz de transformacién para la funcién de onda que depende
de la transformacién de Lorentz para las coordenadas, reemplazando (20)
en (19) obtenemos:

. OS(A)y(x)
KA R

mS(A)y (x)=0. (21)

Los elementos de la matriz de transformacién son:

e, Eeaon (22)

Escribamos (21) de tal forma que aparezcan los elementos de la
transformacion inversa

AS(Ay (x)

iy (A T - mS(Ay (@) =0, (23)

Esta ecuacién necesita ser consecuente con la ecuacién (18) en el
sistema de referencia inicial, entonces debe satisfacerse la relacién:

S(MAF STHA) =AYy Y. (24)

10
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A continuacién vamos a encontrar la expresion explicita del
operador S(A) para esto multiplicaremos S-1(A) por la izquierda en la
ecuacion (23)

oy(x)

WSTA)YH (AL S(A) FxE

-my(x)=0.

como S(A) no depende explicitamente de las coordenadas podemos
extraerlo de la derivada parcial, obteniendo:

Y =S71(A) y¥ (A S(A).

o lo que es equivalente:
S(A) y¥ STHA) =y H(A)},. (25)

Mediante esta relacién construiremos S(A) utilizando para ello las
propiedades infinitesimales de A, las cuales pueden ser escritas como:

(A =gt +6wt , (A =g/ -dw]'. (26)

dw,, es un tensor antisimétrico infinitesimal (w,, =-w,,) [3][8].

Escribamos S(A) en serie:

S(A)=So_isl+... y S—I(A)=SO +iSl+... (27)

El primer término Sy en (27) debe ser la identidad, que
corresponderia a la transformacion A =g. El segundo término, S; es la

primera aproximacién, que en principio deberia ser funcién lineal w,,
por tanto podemos escribir en primer orden:

S(A)=1+iS;, SHA)=1-iS,. (28)

Remplazando estas expresiones en la ecuacion (25) y considerando
s6lo términos de primer orden
(1+iS,)y* (1 -1iS;)=7" (g% + 6w?).

Y, [S1, 74 1= by . (29)

Que también puede escribirse como:
i[Sy,y*]=g* y¥ bw,,. (30)

11
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Ahora haremos que aparezca y“ en la expresién de la derecha de
manera parecida a [S,, y%] con el fin de identificar S;.

Utilizando el hecho que y, v son indices mudos podemos escribir
la ecuaciéon anterior como:

. 1

i[Sy, ')/O[]:g(gmJ YY 5wuv +go yH &Uv;x ).
pero 0w, =-0m,,

. 1 )

1[51,}’“]25(9&“ y' -y g« )&qu-
y como 5{y¢,y#}=g%* entonces:

i[S, y“]=1(—1—{y“ YH} ¥V =¥ l{y"‘ YV} ow

y 29 ’ 9 ’ uv

utilizando la propiedad [AB, C] = A{B, C} - {4, C} B resulta:

L)

i[Sla ya]=_4 y# yv’ya] 6w,uv

Entonces:

[Slv ya]zi[(swuv yﬂ },v, },a]

Comparando podemos ver que:
S, = %&Uw yHyY =é(6w,,v yHyY +5wvuyvy“)=%(y”)/v -yVy#)éw,,,

= %[Y”ayv] 5pr' (31)

Entonces en primera aproximacién el operador de transformacién
para la funcién de onda de Dirac es:

s<A)=1—§[y“,y“]6w,w, S"(A)=1+§[y“,y"] 8- (32)

12
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Debido a la forma diferencial de S(A) en (32), podemos escribir la
siguiente expresién para cantidades ®w,, no infinitesimales:

1 )
S(A)=exp(—§[)’”,}’v] wuv)=exp(%o-”v wuv ) (33)
donde hemos definido:
o E%[y“,yvl (34)

4. Forma explicita del operador S(A)

Sea A una transformacién de Lorentz x-t representado por la
matriz:

coshe senhe¢

AY donde tanh € = . (35)

Il

0 0

0
senhe coshe 0
1
0 0 0

oS O O O

La ultima expresion podemos escibirla en forma diferencial:

A, =gl +éw!, (36)
donde en este caso:

ow = ¢ (37)

S O -
oS O O O

S O = O
oS O o O

0

Sea ahora A una rotacién espacial, por ejemplo alrededor del eje
z, entonces estara representado por la matriz:

1 0 0 0
0 cosf@ -senf 0
B
Ay = 0 senf cosf 0 (38)
0 0 0 1
que en forma diferencial se escribe como:
Ay =gl + 60, ' (39)

13
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donde en este caso:

0 0 00

uo_ 0 0 -1 0
Sw! =66 01 0 0f (40)

0 0 0 O

En general, para una transformacién arbitraria del grupo de
Lorentz, los parametros de transformacion, forman una matriz
antisimétrica:

5wuv =0ua dw (41)

Los parametros correspondientes a la velocidad [t} = tanhlé| estdn
relacionados con los términos ,, =€, mientras que los dngulos de

rotacion alrededor de los ejes x, v, z estan determinados por 6% = %8’1’%0,] .

Para hallar una forma explicita del operador S(A) utilizaremos la
representacién quiral de las matrices de Dirac, las cuales satisfacen las

siguientes relacions [3]: /Z
001:%[y0’y1]=_ia1:_i O(;)t _(2)- ) . (42)
ov =iy :guk(%lc C?k (43)

donde o, son las matrices de Pauliy €, es el tensor antisimétrico de

Levi-Cevita. Descomponiendo (33):

S(A) = exp(i[ooo Wy + 0 0, +0YW,)) (44)

Debido a la antisimetria de @, y de acuerdo a (42) y (43) obtenemos:
_ 1 — vkl Ok 0
S(A)—exp(z[—Zwt Wy, +ng( 0 O_kja)u]) (45)
si definimos & =(0y,x,03), EE(w01,w02yw03)aéE(wZSawBl’wlz) y 0=(01,02,03)
la expresiéon anterior se reduce a:

S(A) = exp(%&-é +%é .0) (46)
El primer término corresponde a las transformaciones espacio

temporales (boost) y el segundo término es la forma usual para la
transformacién de espinores en la mecéanica cuéantica no relativista,

14
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relacionada con rotaciones puramente espaciales; las cantidades € son los
parametros de los boost relacionados con la velocidad fisica v por

tanhe =v, donde v=[v|. Mientras que 6=§) es el angulo de giro

tridimensional con respecto al eje =9

El primer término de la ecuacién (46) puede ser expandido en serie

g2 1 1o -0 1 1o o oshEs@n €
S(A)—1+2a £+2!(2a €) +3!(2a €) +...—cosh2+(0L n)senh2
(47)

donde hemos utilizado la propiedad a? =1 y definido n= % , el cual es un
vector unitario que tiene la misma direccién del vector de propagacion

p-.

El segundo término en (46) sélo interviene si se realizan rotaciones
espaciales sobre el sistema de coordenadas. No las usaremos aqui, en tanto
que sélo nos interesa realizar sobre el sistema de coordenadas, una
transformacién de Lorentz.

5. Solucién de la ecuacion de Dirac

La ecuacién de Dirac, por ser una ecuaciéon que describe una
particula libre, admite como solucién ondas planas de la forma:

Wi(x)=e Pru(p) , ¥ (x)=eP*v(p), py>0

La ecuacién de Dirac implica que:
(yp, —-m)u(p)=0, (¥*p+m)v(p)=0

Si asumimos que la particula es masiva,y, £ 0 entonces en el sistema

de referencia propio, p’ =(m,0), la ecuacion anterior se reduce a:

4° =1) u(m,0)=0 , (y*+1) v(m,0)=0

Existen dos soluciones linealmente independientes tanto para u
como para v, en la representacion usual de Dirac dichas soluciones pueden
escribirse como:

0

0
, u®(m,0) = (ﬂ v0(m0)=| )| v@(md)=
0

0)

1 0
= |0 0
(1) —
u (m,0) 0 0l (48)
0 1

15
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Estas son las soluciones de la ecuacién de Dirac, en la
representacién de momentum, en el sistema de referencia propio. Ahora
utilizaremos la exposicién (46) para hallar la solucién en un sistema de
referencia inercial que tiene una velocidad v con respecto del sistema
propio. '

El operador que transforma la funcién de onda de un sistema a otro
esta dado por (47). Entonces buscaremos una expresion explicita de este
operador:

S(A) =cosh% +(@-n) senh% (49)

.
donde n=—= tanw=v

de la relacién anterior se puede mostrar que:

v
cosh v =———,

J1-v2’ 1-2?

Utilizando las identidades:

1

0] w 1
senh & = ./coshw-1, cosh—=—=-/coshw+1,
2 2 2 2"

senh o=

y las relaciones E? =p? +m® y v= —lg deducimos las siguientes igualdades:
w [|[E-m o [E+m
O_JEEM D cosh = .
senh 5 5 , COS 5 5 (50)

Entonces el operador de transformacién adquiere la forma:

E+m ,- -, |[E-m
+(-m) “om (51)

con 'ﬁ=—g—, |pl=VE? -m?.

S(A)=

Utilizando la representacién de Dirac para @ llegamos a la siguiente
formula:

1] 2P
-l s

2m | SP
E+m

16
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Esta ultima ecuacién podemos escribirla en forma explicita:

1 0 Eﬂzm %

sw=Ermt 0 Lo
Lo 10 (53)
2

Esta matriz transforma las soluciones de la ecuaciéon de Dirac en
el sistema de referencia propio (48) en soluciones desde un sistema de

referencia inercial con velocidad v, es decir transforma la funcién de onda
de (48) en:

1 0
0 1
1 7)) = . [E+ 2 -\ — [E+ _
u( )(m’ p)_ 2mm E—T"; ) u( )(mr p) - 2mm p;:+:" (54)
pr'H'py ~P:
E+m E+m
P: Pxr 1Py
E+yn E+m
= P tip - -P
— |E 2LtV _ |E _FPr
v (m, p) =B S v@(m,p) =52 Eem (55)
1 0
0 1

Estos vectores de onda estan normalizados como es facil comprobar
si se calcula:

ul(p)ul(p)=u*(p) y'u(p)=1 (96)

Conclusion

Se usé la invariancia relativista de manera didéctica para hallar el
operador de transformacién (46) que asocia a cada observador un estado,
el cual se encuentra completamente determinado, si se conoce el
momentum y energia en cierto instante, lo cual es caracteristico de una
particula libre.

En mecénica cuantica no relativista la funciéon de onda asocida a
un electrén es un espinor de dos componentes, cuya ley de
transformacion estd dada por:

17
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y’'=-RYy donde:

R=cos%+(5’-ﬁ) isen % (57)

El caracter espinorial de la ecuacién de Dirac se manifiesta
claramente en la forma de la matriz de transformacién S(A), que
transforma espinores de cuatro componentes llamados bi-espinores:

¥Y’'=S(AY¥Y donde:

S(A)=cosh%+(o?-ﬁ) senh% (58)

La aparicién de funciones elipticas en (58) en lugar de funciones
circulares se debe a que mientras los espinores de la mecénica cuantica
no relativista se transforma sélo bajo rotaciones espaciales, las funciones
de onda de la mecéanica cuantica relativista se transforman, ademas, bajo

rotaciones espacio-temporales (Boost), como lo demustra manifiestamente
(46).
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Funciones de Estado
y Polarizacion de Fotones

Oscar Miculicich, H. G. Valqui*

RESUMEN

Se utiliza la transformada de Fourier para obtener los estados de
polarizacién del fotén a partir de los campos E(r,t)y H(r,t) que
son soluciones de las ecuaciones de Maxwell. Primero se representa
las ecuaciones de Maxwell en_el espacio transformado, cuyas nuevas
soluciones £ (k,t) y H (k,t) son funciones que satisfacen las
ecuaciones de Maxwell modificadas (EMM). Al transformar la
expresion clasica de la energia del campo electromagnético, se
obtiene otra expresién que, por su forma, es identificada con el valor
esperado de la energia del fotén, tomando como funciones de estado
ciertas soluciones de las EMM. Esta eleccion de las funciones de
estado es reforzada al mostrar la coincidencia entre el valor esperado
del momento lineal del fotén y la correspondiente expresién clasica
del campo electromagnético; el refuerzo es ain mayor en el caso del
momento angular, asociado al espin del fotén.

ABSTRACT

Starting from the electromagnetic fields, £ and A, solution of the
Maxwell equations, one applies the Fourier Transform to get the
photon’s polarization states. First, we write the transformed Maxwell
equations, TME, and its solutions E and H. The new formula for the
electromagnetic’s energy density is interpreted as the expected value
of the photon’s energy, where the state funtion is a solution of TME.
Such choice of the state function shows its advantage in the
construction of the expected value corresponding to the photon’s
linear momentum, and more so in the construction of the expected
value of the photon’s angular momentum, where, as a bonus, appears

the photon’s spin.

* Facultad de Ciencias - Universidad Nacional de Ingenieria.
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1. Representacion en el espacio momentum

1.1 Ecuaciones de Maxwell

Se asume que las soluciones de las ecuaciones de Maxwell en el
vacio consisten de dos funciones vectoriales del vector posicién y del
tiempo: E(r,t) y H(r,t). Estas funciones pueden ser escritas como una
superposiciéon de ondas planas:

E(F,t) =L [did € (k,t)eks (1)

(211)3/2

H(7,t) = 5k [dk3 # (k,t) et )

E(?, t)y H (r,t) obedecen las ecuaciones de Maxwell, ahora se determinara
que ecuaciones cumplen € (k,t) y # (k,t). Puesto que el momentum
de un foton estda dado por p =hk, la representacién usando coordenadas

ki, k2 y ks se denominard representaciéon en el K-espacio o espacio
momentum.

En el espacio libre tanto la densidad de carga p como el vector
densidad de corriente J son nulas; en este caso las ecuaciones de Maxwell
toman la siguiente forma:

VXE=-ud,H (3)
V-E=0 (4)
VxH=¢0,E ()
V.H=0 (6)

donde 9, = %; WU, € son las constantes magnéticas y dieléctrica del vacio

respectivamente.

Al reemplazar (1) y (2) en las ecuaciones anteriores, se obtienen:

ikx € (k,t)=—ud, # (k,t) (7)
k-& (k,t)=0 (8)
ikx o (k,t) = €3, € (k,t) (9)
k-3 (k,t) =0 (10)

que representan a las ecuaciones de Maxwell en el K-espacio.
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Ahora, sea V(7) una funcién vectorial de la posicién, cuya
transformada de Fourier se puede escribir como:

V(F) =Ly [ dk® Y (k)ets?,
donde la exigencia de que V(r) sea real, V‘(F)=X7(F) implica que:
J‘dka 1 (k)e'kr—fdks e (l;) e—:EF

y haciendo un cambio de k por — _k en el lado izquierdo de la expresién
anterior, y por razones de independencia lineal, se verifique:

V (k)= ¥ (-k) (L)

(2n )3/2

La igualdad anterior es llamada condicién de realidad de los
coeficientes de Fourier.

Puesto que E‘(F,t) y I:I(F,t) son campos reales; entonces los

campos transformados € (k,t) y # (k,t) ademéas de las ecuaciones (7)
a (10), deben satisfacer la condicién (11), es decir:

8*(k t) = 8(—k t) (12)
H *(k t)= H (- k ,t) (13)

1.2 Las variables de campo en el K-espacio

En el espacio real es posible obtener las ecuaciones de onda para

los campos E(r t)y H(r t) a partir de las ecuaciones de Maxwell (3) a
(6). Similarmente, en el K-espacio al acoplar las ecuaciones (7) a (10) se
obtienen las ecuaciones:

(32 +k2c2) € (k,t) = 0 (14)
(32 +k2c2) H (k,t) = 0 (15)

que representan a las ecuaciones de onda en el espacio momentum.

Las dos ecuaciones anteriores son coincidentes, por tal razén ahora

se analiza las soluciones f(k,t) de la ecuacidn:

(02 +k2c2) f(k,t)=0 (16)
que puede ser escrita de la siguiente forma:
(3, +ike) (3, —ike) f (k,t)=0. (17)
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De (17), se puede ver que la solucién general de la ecuacién (16)
serda una combinacién lineal de las soluciones independientes de las
siguientes ecuaciones:

(9, +ike) f(k,t)=0, (18)
(9, —ike) f'(k,t)=0. (19)

Ahora, sea ]‘( IZ t) solucién de la ecuacion (18); luego, si se realiza
el cambio de t por -t, o se toma el conjugado complejo de la ecuacién
(18) se verifica que f(k -t) y f (k t) son soluciones de la ecuacién (19)
(que a lo mas difieren en un factor por tratarse de una ecuacién diferencial
de primer orden) En cambio, si en la ecuacion (18) se hace el cambio
de k por ~k y puesto que k = ‘ k‘ se verifica que f (- k t) es solucion
para la misma ecuacién. Por lo anterior, si se tiene la solucién para una

de las ecuaciones (18) 6 (19), entonces es posible obtener la solucién para
la ecuacion restante.

Asi la solucién general de la ecuacién (16) puede expresarse como:
£ (k,t)= Af(k,t) + Bf * (~k,1) (20)

donde A y B son coeficientes independientes del tiempo pero pueden
depender de k. La expresiéon anterior debe cumplir la condiciéon de

realidad; es decir: £ *(l; t)= € (—Iz t), de donde se obtiene:
(k )= Af(k t)+A*f (- kt) (21)

que al derivar parcialmente con respecto al tiempo y reemplazando las
ecuaciones (18) y (19) se obtiene:

3, & (k,t) = —ikc[Af (k,t) — A* f*(k,1)] (22)

A partir de las ecuaciones (21) y (22) se verifica que:

.

Fle,t)=3518 (k)= 3, & (k,1)] (23)

y si se multiplica escalarmente esta expresién por k y aplicando (8), se
verifica que:

k- f(k,t)=0 , (24)

que es conocida como la condicién de transversabilidad.

22



REVISTA DE LA FACULTAD DE CIENCIAS - UNI

1.3 Las funciones de estado en el K-espacio

Con la ecuacién (23) se ha mostrado una relacién entre una funcién
f(k t) en el espacio momentum y los coeficientes de Fourier £ (k t); por

consiguiente con el campo eléctrico real E(%,t). Ahora se reconsidera la
ecuacién (18).

aj(lZ,t) = —ikcf(lz,t) que, al multiplicar por i ambos miembros de
la igualdad, se obtiene:

i1d, f(k,t)=hkef (k,t) (25)
lo que al comparar con la ecuacién de Schrédinger:
ihd, |S)=H|S), (26)

hace posible identificar a f como una funcién de estado en el espacio
momentum si se toma como Hamiltoniano al operador multiplicativo

H =khc .

Ahora, se obtendra una expresién para la constante A en la
expresion (23) de tal forma que f quede completamente determinado.
El valor esperado de la energia en el K-espacio estd dado por:

(H)=(S| khe|S) = d*Kkf *(k,t)- (khe) f(k,t), (27)
lo que debe corresponder a la energia clasica del campo electromagnético:

=1 [ dr3[eE? +pH?2]. (28)

Al reemplazar las ecuaciones (1) y (2) en la expresién anterior, luego
del calculo, simplificar y usando las ecuaciones (21) y (22) se verifica que:

W=[ dk® f*(k1)-QelAf) fik,t), (29)

en donde al demandar que W =(H) , la expresién de A debe satisfacer:
A= (4e) " (30)

con lo cual f(k, t) puede ser considerada como la funcién de estado del
foton en el espacio momentum.
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2. Momento lineal y angular en el K-espacio

2.1 Momento lineal del fotén

En esta seccién se verificard que en el espacio momentum las
funciones f(k,t) dadas por la ecuacién (23) y cumpliendo (30), dan una
correspondencia adecuada entre las expresiones del campo
electromagnético clasico y los valores esperados en el K-espacio. Se
muestra el caso del momento lineal, para ello se parte de la expresién del
momento lineal del campo clésico:

p== [dr E(#,t)x H(#,t) (31)

en donde al reemplazar (1) y (2), simplificar y utilizat las expresiones (21)
y (22) se obtiene:

p = [dik® (hk) f * (k, t) - £k, t) (32)

En la expresién anterior se identifica al operador multiplicativo

momento lineal #k en el K-espacio; luego, el valor esperado para cada
componente se expresa como:

(Pa)=(S| pa|S)=[ dK® £ *(k,t)- (hky) F(k,t) (33)

2.2 Momento angular del fotén

De manera similar al caso anterior, a partir de la expresién del
momento angular del campo electromagnético clasico:

J =L [ drd Px[E(F,t) x HG 1)), (34)

se obtiene la siguiente expresién:

- 3 - - -
J=Y [dk? f* a(k,t) [~ikkx V] fa(k,¢)
p=1
+[dIe3 (=in) £ * (e, t) x £k, 1), (35)

El primer término de la expresién anterior se interpreta como el
valor esperado del operador momento angular orbital L del fotén, debido

a su presencia en la forma —-ihl;xV,z correspondiente al K-espacio. El
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segundo término de (35) es algo nuevo y no es evidente que pueda
considerarse como un valor esperado; luego se mostrara que es posible
darle la forma de un valor esperado.

3. Estados de polarizacion del foton

3.1 Espin del fotén

En esta seccién se trabaja con el segundo término de la expresion
(35). Primero se consideran dos vectores A y B cuyas componentes
pueden ser nimeros complejos; luego, es posible calcular las componentes
del producto A*x B por algebra vectorial.

La componente k del producto A*x B puede escribirse como:
(A*xB), =(A"xB)-é, =-A"- (¢, xB)
--A"-(E.B)=- (A, E,B) (36)

donde E, es una matriz tal que E, g=e,xq para q arbitrario, y los e
son los vectores de la base canoénical?.

Para calcular los conmutadores de las matrices Ei, notemos que:
[E,,E.1q=E;E.d- EE,g=¢,x(é, xq) — €, x (&, Xq) = (€, Xe,)xq,
es decir: [E;,E,]q= (¢, xé,)xq=E;q de donde [E,, E2] = E3 (pues q es
arbitrario). Analogamente se obtiene: [Ez, E3] = E1 y [E3, E,] = Ea.

Si se define el operador vectorial de tres componentes
E =(E,,E,,E;), entonces las tres relaciones de conmutacién anteriores
se pueden escribir como:

ExE =E. (37)

Por otro lado a un operador vectorial V se lo define como operador
de momento angular, si cumple con la condicion:

VxV =inV. (38)

De (37) se observa que E no es un operador vectorial de momento
angular; sin embargo, a partir de éste se puede construir un operador S
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que cumpla (38). Entonces, usando la relacién (37) se puede definir el
operador S =iiE que, como puede verificarse directamente, satisface la
condicion (38).

Las matrices Sy estan dadas por:

00 0 0 0 1 0 -10
S, =i 0 0 —1|, Sy=ill 0 0 0|, Sy=iH1 0 0 (39)
01 0 100 0 0 0

Ahora, la j-ésima componente del segundo término de (35) se puede
expresar como:

[ dIPL=in) £ (k,)x f e, 01, = (f] S, | ) (40)

que representa al valor esperado de la componente j del momento angular
intrinseco o espin del fotén, donde | f) es el vector de estado que representa

a la funcion de estado J;(lz,t) y el producto del lado derecho incluye la
integracion sobre la variable continua k.

Se puede verificar que: S2 = >, 82 =2h*1 y ademas que [SJ,§2] =0,
lo cual garantiza la posibilidad de encontrar vectores propios comunes
entre el operador S 2 y cualquiera de sus componentes S,. Ademas, puesto
que el operador S? es proporcional al operador identidad, cualquier vector

de estado |y) es vector propio de este operador con valor propio 242 ; esto
indica que el nimero cuéntico de espin del fotén debe ser s = 1.

Al resolver la ecuacién de valores propios: S3|x)=Alx) se obtiene los

vectores propios normalizados |x,), |x:) y |x-) asociados a los valores

propios 0,+#% y —h, respectivamente:

0 ) e—m/4 e+m/4
]x0>=[?J, 'x+>=\T§_ e+1(7)r/4 : |x_>= e—m/4 (41)

Los vectores propios |x,) y |x.) corresponden a los estados de

polarizacién circular derecho e izquierdo cuando k es paralelo al eje z.
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En el mismo caso (l; paralelo al eje z), se tiene que:

(klx:)=0, (42)
es decir se cumple la condicién de transversabilidad; entonces, estos dos

estados son observables (experimentalmente). Para el estado |y,), se tiene
que:

(k| %0)#0, (43)
y es la condicién de transversabilidad la que prohibe (en este caso) la
observacién experimental de este estado.

4. Conclusiones

La funcién de onda vectorial en el espacio momentum, f(k,t),
solucién de la ecuacién (16), queda determinada por el campo eléctrico
transformado, ecuacién (23). Eligiendo la constante A como en (30), dicha
funcién vectorial justifica su eleccién como funcién de estado del fotén,
al proporcionar las expresiones correctas para los valores medios clasicos
de la densidad de energia electromagnética, ecuacién (27), de la densidad
de momento lineal, ecuacién (33), y de la densidad de momento angular,
ecuacion (35), correspondientes a los operadores H =hke (multiplicativo),

P=hk (multiplicativo) y L= ik x V. respectivamente.

En la transformada de Fourier del momento angular clésico,
ecuacion (35), se obtienen dos sumandos; el primero es facilmente
interpretable como el momento angular orbital, pero el segundo resulta
ser una agradable sorpresa fruto de haber usado f(k,t) como funcién de
estado. Dicho sumando da el operador de polarizaciéon del fotén, con la
caracteristica de transversabilidad de sus vectores propios.
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+Un Experimento
crucial para verificar
el entanglement
de dos fotones?

H.G. Valqui*

RESUMEN

En acuerdo con cierta versién de la Interpretacién de Copenhagen,
muchos fisicos consideran que un fotén carece de un estado definido
de polarizacién, previo a la medicién de dicho estado, es decir, antes

de haber pasado por un polarizador. Asi, cuando fotones gemelos
(entangled) son emitidos por una fuente apropiada, cada uno de ellos
tiene «todos los posibles estados de polarizacién» y, si alguno de
ellos atraviesa un polarizador, adquiriendo el correspondiente estado
de polarizacién, entonces el otro fotén adquiere instantaneamente el
mismo estado de polarizacién. Este misterioso enlazamiento entre
los dos fotones muy separados (por lo cual ya no podrian interactuar
entre si) ha sido supuestamente verificado, entre otros, en los
experimentos de A. Aspect.

Pero no todos los fisicos (interesados en el tema) se sienten
contentos con la interpretacién de los resultados de los experimentos
de Aspect. Por tal razon - y siguiendo el criterio de «desafio
negativo» de K. Popper - aqui presento un experimento crucial para
despejar las dudas sobre la existencia del misterioso enlazamiento
entre los fotones gemelos.

* Facultad de Ciencias - Universidad Nacional de Ingenieria.
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ABSTRACT

According to the so called Copenhagen Interpretation many
physicists suppose that a photon has no polarization state before
such property has been measured, that is, before it has been
transmitted by a polarizer. So when twin photons (entangled) are
emitted from a suitable source they have «all possible polarization
states» and, if one of them is transmitted by a given polarizer,
acquiring the corresponding polarization, then his twin photon
acquires instantaneously the same polarization state. This
entanglement between the twin photons has been supposedly
verified, among others, by A.Aspect.

But not every physicist feels happy with the interpretation of
Aspect’s experimental results. For that reason - and following
Popper’s falsifiability criterion - I state here a crucial experiment
which should clarify any doubt concerning the existence of the
entanglement of the separated photons.

1. Es un hecho experimental que si un fotén incide
(perpendicularmente) sobre un polarizador, entonces puede atravesarlo o
ser absorbido por éste. Ademas, si lo atraviesa, adquiere un estado de
polarizacién inducido por dicho polarizador. Por otra parte, también se
verifica experimentalmente que si un fotén atraviesa consecutivamente
dos polarizadores, cuyas direcciones de polarizacién forman un angulo
6, entonces la probabilidad de que el fotén pase el segundo polarizador
es igual a cos?0 (Ley de Malus)

- [P ‘ \-

De lo anterior puede verse que si un fotén (aislado) estuviese
polarizado (sin que su estado de polarizaciéon fuese conocido), seria
imposible medir tal estado de polarizacién. Del hecho que tal fotén
atraviese un polarizador solamente podria deducirse que su estado de
polarizacién no era perpendicular a la direccién del polarizador; y si el
foton fuese absorbido, solamente podria deducirse que su polarizaciéon no
era paralela a la del polarizador.
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2. A continuacién muestro esquematicamente un experimento que
genera fotones enlazados. Una fuente, F , de &tomos de calcio excitados
de tal manera que al cesar la excitacion sus electrones vuelven al estado
fundamental, emitiendo en sentido opuestos fotones gemelos (en cascada),
de polarizacién indefinida, pero conservando un momento angular total
nulo.

|<12_//’

/

J

Cuando el fotén de la derecha atraviesa un polarizador IT, adquirira
un cierto estado de polarizacién que indicaremos con |¢) . En el mismo
instante el fotén de la izquierda —que no atraviesa ningiin polarizador-
habria adquirido el mismo estado de polarizacién )

3. 6Cémo se verifica experimentalmente que los dos fotones
adquieren el mismo estado de polarizacién?

Para ello a los dos fotones se los hace incidir sobre sendos
polarizadores «paralelos», obteniéndose que, cada vez, ambos fotones son
absorbidos por sus correspondientes polarizadores, o0 ambos fotones son
trasmitidos por dichos polarizadores. Segun la informacién de los
especialistas, tal coincidencia (ambos absorbidos 0 ambos trasmitidos) es
del 100%, para orientaciones arbitrarias de los polarizadores paralelos
[Aqui no estoy mencionando algunas consideraciones experimentales
importantes, como la garantia de que cada vez se trata de fotones

realmente gemelos. Pero tales consideraciones no son significativas para
el propdsito de este articulo].

4. Para compensar la exigencia formal de un ntimero infinito de
experimentos «positivos», necesarios para asegurar la validez de un
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«teorema» experimental, el fisico-filésofo Karl Popper creé lo que aqui
llamo un «desafio negativo» (falsibiability criterion), consistente en la
construccién de un experimento que posiblemente muestre resultados que
contradigan los resultados ya aceptados.

[, F
o,/ 0) Haer
‘ o e Z‘?,L. )

El experimento propuesto es el siguiente:

i) Al incidir (solamente) el fotén de la derecha sobre un polarizador
IT1 adquiere un determinado estado de polarizacién, por ejemplo,
10); v el fotén de la izquierda, por efecto del misterioso
enlazamiento, adquiere el mismo estado de polarizacién |0).

ii) A continuacién del polarizador IT colocamos un segundo
polarizador Ilger , cuya direccion forma un angulo 6 con la
direccién de I1, como se muestra en el dibujo. Entonces la
probabilidad de que el fotén —en el estado |9), porque ya ha sido
trasmitido por el por el polarizador [1- sea también trasmitido
por el polarizador Ilger serd pder(0) = cos?6.

iii) Después de que el fotén de la izquierda, por efecto del misterioso
enlace, haya adquirido el estado |9) , lo hacemos incidir sobre un
polarizador Il,,q , cuya direccién forma un dngulo o con el
polarizador IT - que este fotéon no ha atravesado -, como se
muestra en el dibujo. Entonces, la probabilidad de que el fotén
(que avanza hacia la izquierda) sea trasmitido por el polarizador
I1,q Serd piq(®) = cos?a.

iv) Las probabilidades pder(0) y pizq(®) no deberian ser dificiles de
medir (para quien ya ha realizado los experimentos que
evidencian el misterioso enlace); pero existe una situacion que
daria resultados mas categéricos: elegir los angulos tales que «
= 0 + m/2, con lo cual deberia cumplirse que  pder(0) + Pizg(Q)
= 1.

v) La prueba negativa mas contundente se plantea eligiendo
8 = 0, con lo cual el foton de la derecha deberia ser siempre
trasmitido por el polarizador Ilger , mientras que el fotén de la
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izquierda deberia ser siempre absorbido por el polarizador Iz
Los resultados contrarios sucederian si se eligiese 6 = 7/2 ; el
fotéon de la derecha seria siempre absorbido por Il4er , mientras
que el fotéon de la izquierda seria siempre trasmitido por ITiz,.

vi) 6Qué sucederia si el foton de la izquierda no fuese afectado por
lo que hubiese sucedido con el fotén de la derecha?

En tal caso, mientras que el fotén de la derecha, después de pasar
el polarizador IT ha adquirido el estado |¢), en cambio, el fotén de la
izquierda mantendria un estado de polarizacién desconocido, lo que
posiblemente seria causa de que su trasmisién por el polarizador I1;2q fuese
un numero aleatorio, mientras que para el lado derecho se mantendria
que pder(0) = cos3(0).

Conclusion

Puesto que no existen argumentos contra la ley de Malus, el
experimento propuesto deberia decidir si efectivamente las probabilidades
Pder(6) y pizq(®) tienen los valores predichos por los resultados del
misterioso entanglement. En caso de no cumplirse la prediccién
mencionada, habria que aceptar que el fenémeno de entanglement ha sido
solamente una persistente ilusién.
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Enlazamiento
(Entanglement) clasico

H.G.Valqui*

RESUMEN

La situacién de acoplamiento (o entanglement en el lenguaje cuéantico)

se produce cuando en un sistema de ecuaciones diferenciales lineales las

funciones en consideracién (componentes de una funcién vectorial o de
un producto tensorial) no poseen soluciones independientes una de las
otras. Aqui debemos notar ciertas cuestiones:

i) Las funciones en consideracién pueden referirse a situaciones clasicas
o a situaciones cuanticas,

ii) El acoplamiento puede referirse a los estados de ‘movimiento’ de
cuerpos fisicos, como es el caso de los dos cuerpos; puede referirse
a los estados de ciertas propiedades de dos cuerpos fisicos, como es
el caso de los estados de los espines de dos electrones; o puede referirse
a las funciones de estado que son proyecciones de una funcién de
estado, como es el caso del péndulo compuesto; o pueden referirse
a las funciones de estado que son factores de una funcién de estado
producto de las funciones anteriores, como es el caso de la membrana
vibrante. Posiblemente existan algunos otros casos, la lista anterior
no pretende ser exhaustiva.

iii) La situacién de acoplamiento es un fenémeno matematico, que puede
corresponder a muy diferentes situaciones fisicas. Estas situaciones
fisicas, a su vez, deberian ser representaciones — mas o menos sensatas
- de las correspondientes ecuaciones diferenciales lineales. Un caso
especial, por razones netamente fisicas, surge en el modelo cuantico
de las particulas idénticas, sin paralelo en el modelo clasico.

* Facultad de Ciencias - Universidad Nacional de Ingenieria
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iv) Las ecuaciones diferenciales lineales en cuestiéon pueden corresponder

V)

a un modelo clasico o a un modelo cuantico. Mateméaticamente no
hay diferencias entre los dos casos; fisicamente las diferencias pueden
ser notables. Por otra parte es necesario tener presente las diferencias
entre los casos de funciones ordinarias de una variable y funciones
de varias variables.

Estas aclaraciones son necesarias, entre otras cosas, para evitar
interpretaciones fisicas ‘demasiado profundas’ que se constituyan en
una camisa de fuerza para las verificaciones experimentales del caso.

ABSTRACT

The question of entanglement appears when functions which are solutions
of a system of linear differential equations, are not independent of each
other. In that sense we should note the following:

1)

i1)

The above mentioned functions may refer to a physical problem
described classically, or described by the model of the quantum
mechanics.

The entanglement may refer to the ‘motion’ of some physical particles,
as in the problem of two bodies; or it may refer to the states of some
properties of two physical particles, as in the case of the spins of two
electrons; or it may refer to the function states which are projections
of another state function, as is the case with the compound pendulum;
or it may refer to state functions which are factors of a state function
which is product of such function, as in the case of vibrating
membrane. This list is not exhaustive; possibly other cases of
entanglement may exist.

iii) Entanglement or coupling is a mathematical fact, which can

correspond to very different physical phenomena. On the other side,
such physical phenomena should be - more or less - sensible
representations of the corresponding linear differential equations. A
special case — based on genuine physical motives — appears in the
quantum model for identical particles, which has no analogue in the
classical model.

iv) The considered linear differential equations may arise from a classical

V)

model or a quantum one. Mathematically there is no difference
between both models; physically there are big ones. But there are
differences between the situations described recurring to ordinary
functions of one variable and function of several variables.

The above exposed considerations are important, besides other
questions, in order to avoid ‘profound physical interpretations” which
may become a strait jacket for the interpretations of the experimental
facts.
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I) Péndulos acoplados

Pl P2

r,=(a sena+b senB,a coso+b cos@) Tr=(d+a seno+b send,a coso+b cosd) -

En la figura se muestran dos péndulos acoplados por una varilla ideal.
Aplicando la Segunda Ley de Newton para el movimiento de las peonzas,
obtenemos las ecuaciones para las tres variables angulares, donde los
«puntitos» superiores indican derivacion temporal:

g sen® = — (a sena + b senB)** cosb + (a cosa + b cos0)** senb [01]
g sen® = — (a sena + b sen9)* cosd + (@ cosat + b cosd)*™ sendp  [02]
2g sena = — (2a sena + b send + b sen0)** cosa + (2a cosa +

b cos® + b cosd)*® sena [03]

Estas ecuaciones del movimiento son ecuaciones diferenciales no lineales,
cuyas soluciones deben ser calculadas numéricamente. Semejantemente
al caso del péndulo simple, realizaremos algunas simplificaciones que las
conviertan en ecuaciones lineales. Supondremos (y las soluciones valdran
en tales condiciones) que los dngulos de desviacion son bastante pequenos
como para considerar insignificantes los efectos de, por ejemplo, 6, 6°6,
a2, 0°a, etc. Entonces, las ecuaciones [01], [02] y [03] toman las formas
(lineales):

gsenO + (aa+b0)** =0 [04]
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go+ (@ a+dbd)»= 0 [05]
2ga+ (2aa+b6+bo)r =0 [06]
de donde, [04] + [05] - [06], resulta que 6 + ¢ = 2 « [07]
Eliminando la variable o , las escuaciones de estado seran:
280 + (a + 2b)0* + a0 =0 [08]
26 0 + a6 + (a+ 2b)¢o*" =0 [09]
0, en forma matricial:
0 a+2b a 0" 0| a+2b —a ||0
2g + = 0, es decir + g/[2b(a + b)] =0
(0] a a+2b)|¢" ¢ -a a+2b |0

Designando con % =[0, ¢] al vector (columna) de estado del sistema
(que describe el movimiento de los péndulos), la ecuacién anterior puede
escribirse :

x** + g/l2b(a + b)]Qx =0 [10]

El hecho de que la matriz Q no sea diagonal significa que los movimientos
de los péndulos estédn acoplados o enlazados. Veamos qué condiciones se
requieren para desacoplar o desenlazar dichos movimientos.

Los vectores propios de Q son u; = [1 -1] y u = [1 1]
con los correspondientes valores propios A; = 2(a + b) , A2 = 2 b.

Como los vectores propios constituyen una base (ortogonal) para describir
cualquier estado (o solucién de la ecuacién de estados), podemos escribir
X = dq1 ur + Q2 uy, [11]
lo que reemplazado en [10], da
q1** u; + g2 uy + g/[2b(a + b)] (1 Ay up + Q2 Az u) = 0
lo que permite escribir las dos ecuaciones desacopladas:
Qi + wi® q =0, Q2 + w2l q2 = 0 [12]
donde w;? = g/b w2’ = g/la + b) = wi2/(1 + a/b) [13]

Entonces, qk(t) = Ak sen(wkt + si),k = 1,2 ; donde Ag, sk son
constantes de integracién, determinadas por las condiciones iniciales.
Ahora, de [11] obtenemos que,

0,¢] = [a1 +q2 , - a1 + q2] ‘[14]
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es decir,
0(t) = A; sen(wi t + s1) + A2 sen(wat + s2) [15A]
o(t) = - A; sen(wy t + s1) + Az sen(wz t + s2) [15B]

donde se hace explicita la forma de enlace de las soluciones del
movimiento: El movimiento de cada uno de los péndulos depende de las
dos frecuencias w; , wa.

En esta aproximacién lineal, la energia del sistema tiene la forma:
(m/2) (@ o® + b 0°2 + (m/2)@ o* + b ¢°)> - 2 mg(a + b) = E [16]

es decir,
[(@/2 + b)2 + (a/2)?] 62 + [(a/2)2 + (a/2 + b)?] 02 +
a (@ + 2b) (6° ¢°) — 4'g(a + b) = 2E/m [17]

Esta ecuacién [17], junto con las ecuaciones [15], muestra que los dos
)

péndulos intercambian energia cinética (cuando 0*2 crece, entonces 0

decrece, y reciprocamente).

La frecuencia del intercambio de energia se obtiene de w; - wy =
wi [1 - 1/(1 + a/b)!?], es decir,

wi - wa = (a/b) wi /[1 + ab + (1 + a/b)'?] [18]
donde puede apreciarse cuando a — 0 el tiempo de transferencia se vuelve
infinito, lo que corresponde al desacoplamiento de los dos péndulos (uno
actia independiente del otro).

- [ 1 —

. a=0
a mediano a pequeno

a grande /

El intercambio de energia entre los dos péndulos se realiza a través de la vanlla
horizontal, que se encuentra a la distancia a del soporte. Para valores grandes de a el
intercambio es rdpido Para a pequefio el intercambio es lento, tendiendo a infinito
cuando el valor de a tiende a cero. Esto puede ser claramente observado
experimentalmente (donde debe tenerse cuidado de que la varilla sea bastante liviana; en
tal sentido conviene usar, por ejemplo, un sorbete de liquidos)

Con el objeto de apreciar mateméaticamente el desacoplamiento,
escribiremos las expresiones [15A , B] vectorialmente:
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[B(t) , d(t)] = A; sen(wy t + s7)[1 -1] + A, sen(wa t + s3) [1 1] [15C]

Para el caso de a = 0, es decir, ws = w; = w, las funciones de estado,
0(t), ¢(t), resultan desacopladas,

0(t) 1 0
= Aszsen(wt +s3) + Agsen(wt +s4) [19]
o(t) 0 1
donde, Ajz sen(wt + s3) = A sen(wt + s1) + Az sen(wt + sp)
Ay sen(wt + sq) = -A; sen(wt + s1) + Az sen(wt + s5)

Lo que muestra que las funciones de estados, 6(t), ¢(t) , son
independientes entre si.

IT) Resortes acoplados

Consideremos dos bloques de masas m , conectados a 3 resortes de

constantes elasticas de valor k; , como se muestra, donde los extremos

se encuentra a la distancia L.
Z) =X = X0y Zy = Xy — Xy
ko ki ko |

Las longitudes de los resortes son:
X101 X=Xy » Li—xy

X] X2

Aplicando la segunda ley de Newton se obtienen las ecuaciones de los
movimientos:

- ko z1 + ki (z2 - z1)= m z;**

- ki(z2 - z1) - k2 z2 = m z** [20]
o, en forma matricial,
-A C A Z °* A=(ko+ kl)/m
= B = (kz + kl)/m
C -B V) V) C= k]/m
o también, Qz = z* [21]
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Los vectores propios (no unitarios) de Q son ux = [C A + Al o,
si se prefiere, [Ax + B C], parak =1, 2 ; con
2o, =-A-B+ R, 2\, = -A-B-R, donde R = [(A - B)? + 4C?)!2

Puede verificarse que estos valores propios son negativos.
Ahora los vectores propios (no unitarios) ortogonales se pueden
escribir como
uy=[B-A+R C] u,=[C -(B-A + R)] [22]
que usamos como base para expresar el vector solucién
Z=qiu + q2u
lo cual reemplazado en [21] da, como anteriormente, las ecuaciones
a” +[(A+B-R)2laq =0, q” +[A+ B+ R)2]lq =0 [23]
cuyas soluciones (salvo un factor constante) son

qi(t) = sen(w; t + a4) qz(t) = sen(wz t + o) [24]
conocidas como coordenadas normales. Se trata de las coordenadas del
sistema fisico constituido por los dos bloques, y no de las coordenadas
de los bloques. Aqui
wi = [(A+B-R)2]" | wy,= [(A+ B+ R)2]'2
A los vectores-soluciéon

Z(t) = sen(wi; t + o1) u;  Zy(t) = sen(wz t +02) Uz [25]
los designamos como (soluciones o) estados propios del sistema fisico.
En cada estado propio, los bloques se mueven con la misma frecuencia
y fase, pero con diferentes amplitudes (determinadas por las componentes
del correspondiente vector propio). El estado general del movimiento sera
una combinacién lineal de los estados propios:

z(t) = Cy Zy(t) + Cp Zy(t) [26]

En [25] puede apreciarse que los estados propios del sistema son
independientes (por ello dichos estados son importantes en la descripcion
del movimiento del sistema); pero lo que fisicamente nos interesa es el
acoplamiento entre los movimientos de los bloques. En [26] puede verse
que los movimientos de los bloques, dados por z(t) y za(t), se encuentran
acoplados (o enlazados).

En el dibujo puede apreciarse que el enlace esta determinado por
la constante k; , es decir, por la constante C.

Para k; = 0 (C = 0) los bloques independizan sus movimientos.
En efecto, para

k; = 0, A > B se obtiene,

w; = B2 | wo = A2 | u;=2B[1 0], wu=-2B[0 1]
con lo cual, en esta situacién particular, Z;(t) describe el movimiento
del primer bloque, mientras que Z(t) describe el movimiento del segundo
bloque; siendo cada uno de los movimientos independiente del otro.
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Por otra parte, de [20] se obtiene la ecuacién de la conservacién de
la energia:
(m/2) 2°? + (ko /2) z:* + (M/2) 22°2 + kp 222 + (ky/2)(z2 - 212 = E
donde puede apreciarse que el quinto sumando de la izquierda es la
energia de acoplamiento; la misma que tiende a cero cuando tiende a
anularse el enlace entre los dos bloques, por tender k; a cero.

III) El péndulo compuesto

El péndulo compuesto es un €
sistema fisico formado por un

unico péndulo ABMP donde se
verifica que las cuerdas ideales AM
MB y MQ permanecen coplanares.
El 4ngulo o indica cuanto se aparta
el plano ABM de la vertical, mientras que
el dngulo 6 corresponde al ‘péndulo’ MP
Aplicando la Segunda Ley a la peonza en B
obtenemos las ecuaciones no lineales:

€3

o> 0 en sentido de e,
0 >0 ensentido de e>

a0+ fa*cosd - 2760°0 senf = — g sena. [27]
0" + (a + ¢ cosB) a* 2 send + g cosa send = 0 [28]

Como en el caso de los péndulos acoplados, consideraremos valores de
los éngulos, 6, o, suficientemente pequefos, de manera que 02, o2,
0,02, a?,y productos del mismo orden, puedan ser considerados
insignificantes. Entonces las ecuaciones [27] y [28] se reducen a dos
ecuaciones lineales,

(a+/)a” +ga=0 [29]
/0 +g0=0 [30]

que son las ecuaciones de dos péndulos simples, independientes entre si,
de longitudes a + /y ¢, respectivamente.

En este ejemplo, podemos apreciar el interesante caso de que, a pesar
de tratarse de un dnico péndulo (no simple), el sistema fisico se comporta
como si se tratase de dos péndulos simples (desacoplados) independientes
uno del otro.
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El comportamiento de los ‘dos péndulos’
desacoplados se puede verificar Q°
experimentalmente, montando
ortogonalmente dos péndulos simples,
uno de longitud a + ¢, en un plano o
paralelo al plano XOZ, cuyo soporte Q°
esta en la prolongacién de AB; el otro, de
longitud /¢ , en un plano paralelo al YOZ ,| /..
cuyo soporte M* se encuentra a la altura
de M (este punto, en la aproximacion
usada, mantiene una altura constante).

A continuacién, dando los valores iniciales adecuados, se puede lograr que
los dos péndulos ortogonales se muevan isécronamente con cada una de
las correspondiente proyecciones del péndulo compuesto. También se
puede lograr el efecto contrario (lo cual es una tarea que debe ser realizada
cuidadosamente y con mucha paciencia): Estando el péndulo compuesto
detenido, y los péndulos proyecciones en movimiento, se puede dar al
péndulo compuesto las condiciones iniciales tales que permitan que las
proyecciones de su movimiento sean is6cronas con los movimientos de
los péndulos simples ortogonales.

IV) El problema de dos cuerpos

Sean dos cuerpos, uno de masa mj en P;, y otro de masa m2 en P, ,
que interactian segun las fuerzas

Fi; = -K(r1-rp)/ |r - r2|? [31]
sobre el primero; F3; sobre el segundo, donde Fi2 + Fo1 = 0.

Entonces, en una referencia inercial se cumplira

Fi» = m; d?r;/dt? Fy1 = my d2ry/dt? [32]
donde resulta evidente que los movimientos de los dos cuerpos se
encuentran acoplados o enlazados.

Si ahora consideramos el vector de posicién del centro de masa, R = (m,
r; + my r2)/(m; + my) , y definimos el vector de posicion relativa del
cuerpo 1 con respecto al cuerpo 2, como r =r; - Iz, obtenemos que

rr=R+myMr , r,=R-m/Mr
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Sumando y restando las ecuaciones [32] obtenemos las ecuaciones
diferenciales para R y parar ,
d’°R/dt? = 0  d?r/dt? = m d?r/dt?, donde m = mmz/M [33]
que son dos ecuaciones completamente independientes entre si: Es decir,
el movimiento del centro de masa, R(t) , se realiza independientemente
del movimiento relativo, r(t) : Los estados (de movimiento) de los sistemas
descritos estan totalmente desacoplados. Debemos destacar que no se trata
de los estados de las dos particulas (que si se encuentran acoplados), sino
de los estados de dos sistemas fisico-matematicos. Esto es parcialmente
similar al caso del péndulo compuesto, donde las ecuaciones [29] y [30]
se refieren a dos péndulos que existen matematicamente, pero no
fisicamente.

Finalmente debemos tener presente que si, en el movimiento relativo
(que se desarrolla en un plano), queremos separar el movimiento radial
r(t), del movimiento angular q(t), dichos movimientos resultan acoplados
por la conservacién del momento angular,

r’ d6/dt = constante [34]

V) La membrana vibrante

La funcién de estado, y(x , z , t), que describe las vibraciones de una
membrana debe satisfacer la ecuacién de onda,

¢z V2 y - 9%y/o%t = 0 - [35]
donde debe suponerse que las vibraciones resultantes son libres, generadas
solamente por las condiciones iniciales, pero sometidas a ciertas
condiciones de contorno (como sucede en el caso de la ecuaciéon de
Schroedinger). Aqui no nos interesa hallar la solucién de la ecuacion de
onda en forma compacta, sino en su forma de producto de funciones.

Ensayando la separacién de variables V(ix,z,t) =Ukx, z) T()
obtenemos (V2 U)/U - (d?T/d)/c®T = 0. Aqui ambos sumandos son
independientes, por lo cual cada uno de ellos debe ser igual a una misma
constante. Con el objeto de que las soluciones se mantengan acotadas
elegimos que dicha constante sea negativa, — k? ; asi obtenemos las
ecuaciones:

VEU + k¥®U =0, d2T/d% = wiT ,con w = k/c [36]
siendo k una constante arbitraria. Es decir, en realidad se trata de dos
familias mono-paramétricas de ecuaciones diferenciales, donde el producto
de cada par de soluciones es, a su vez, una solucién particular de la
ecuacion [35].
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La solucién de la segunda ecuacién [36] es directa,

Ti(t) = Ak e Wt + Bre 'Vt [37]
Para hallar las soluciones de la segunda ecuacién, consideraremos el caso
en el que el contorno es circular y permanece fijo.

Ux,z) =0 para x* + z2 = r? [38]
Habiendo tomado el centro de la membrana no deformada como el origen
de coordenadas, conviene, por razones de simetria, trabajar con
coordenadas polares, r, 0 ; entonces la primera ecuacion diferencial de
[36] toma la forma.

(1/r) [0/0r (r 0U/Or) + (1/r) 0®U/0%*q] + k®* U =0
o también,
02U/or? + (1/r) oU/or + (1/r) 9°U/0%q] + k* U = 0 [39]

Ahora ensayamos la separacién de variables U(r , 6) = R(r) Y(6), con lo
cual se obtienen dos ecuaciones diferenciales,

R+ ()R + &k2-v¥r) R=0 , Y’ +v2Y=0 [40]
donde la constante de separacién, v?, ha sido elegida de manera que las
soluciones se mantengan acotadas.

Aqui queremos destacar varias cosas:

i) Las soluciones R, Y de las ecuaciones [40] no sé6lo estan acopladas
por el pardmetro v, sino también por el pardmetro k ; de manera que

la escritura correcta de dichas ecuaciones deberia ser:
R’ + (1/r) Ry’ + (k%2 = v¥/r?) Rgy = 0, Yy, + vZ Y= 0 [41]

ii) La solucién y del problema planteado por la ecuacién [35] y las
condiciones de contorno que se deseen estipular, no puede ser
(excepto en algunos casos particulares muy especiales) igual al
producto RyyYkv Tk, sino las combinaciones lineales adecuadas,
y(r, 0,t) = Xkv Mgy Riu(r) Yiu(8) Ti(t) [42]
donde las constantes My, deben ser determinadas por las condiciones
de contorno. Aqui podemos apreciar claramente que las funciones
factores, R, Y, T se encuentran inevitablemente acopladas.
Suponiendo (como es usual) que se desee que el borde, para r = a,

se mantenga fijo, entonces debera cumplirse que, y(a , 6 ,t) =0,
es decir, las constantes My, deben satisfacer la ecuacion
0 = Ykv Mkv Riv(a) Yiu(0) Tk(t) , para todo 6, t [43]

iii) En el caso muy particular en que las funciones factores no se
encontrasen acopladas, es decir, la solucién sea de la forma,
VY (1, 0,t) = Riu(r) Yiu(0) Tk(t) [44]
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para ciertos valores fijos de la nimeros k , v, entonces las condiciones
iniciales deben ser estipuladas de manera que se cumpla

vw(r, 6, 0) = Riy(r) Yiu(0) Tk(0) para todo valor de r y de 6 [45a]
y para las condiciones de contorno anteriores,

0 = Ris(a) Yro(0) Tk(t) , paratodo 6 ,t [45b]
cuya unica solucién es la solucién trivial, y = 0 .

Conclusiones

1)

11)

1i1)

Tanto en el caso de los dos resortes acoplados, como en el caso de
la aproximacién lineal de los dos péndulos acoplados se ha mostrado
el parametro de acoplamiento, el mismo que al tender a cero produce
el desacoplamiento.

En el caso del péndulo compuesto se ha mostrado cémo un sistema
fisico, con componentes fisicas no desacoplables, puede tener (en su
aproximacién lineal) dos componentes o proyecciones totalmente
desacopladas.

En el caso del Problema de los Dos Cuerpos se ha mostrado que dos
cuerpos acoplados por un potencial de interaccién, pueden ser
tratados como dos sistemas matematicamente desacoplados (el de
Centro de masa y el de Movimiento relativo).

En el caso de la cuerda vibrante se ha mostrado cémo una funcién
de estado puede ser expresada como el producto de funciones factores,
las mismas que, en este caso, resultan inevitablemente acopladas.

Posiblemente existan otros casos de acoplamientos clasicos, que
pongan en evidencia caracteristicas interesantes de tal situacion.
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RESUMEN

En el presente trabajo, estudiamos el conjunto
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1. Introduccién

En la Teoria de Funciones de una variable compleja, es bien
conocido el siguiente resultado [2]: Dada la serie de potencias de una

variable compleja centrada en z,e C

oo

Y a,(z-2z)",

n=0
existe un Unico nimero real Re [0,+] tal que:

(1) La serie de potencias converge absolutamente en Dg(z,) cC.
(2)La serie de potencias diverge en C - Dg[z]
(3)S1 0 < r < R entonces la serie converge uniformemente en

Dr(ZO)g C

en donde Drg(z) (respectivamente Dg[z0]) denota al disco abierto
(respectivamente, disco cerrado) de C centrado en 20 y de radio R. El
numero R es llamado radio de convergencia de la serie de potencias dada.
Ademas, por el Teorema de Cauchy - Hadamard, este radio de
convergencia puede ser calculado por la férmula

1

. 1
= limsup [C,|".

n—oo

El disco abierto B,(0) es llamado dominio de convergencia de la serie
de potencias.

Recordemos ademas que en el circulo Srlz0] = 0Bgr(zp) la
convergencia de la serie de potencias es, por lo general muy complicada.

Una pregunta natural seria {Qué ocurre si en lugar de trabajar con
series de una variable, consideramos series de potencias de varias variables?
Las series de potencias de varias variables ocupan un papel fundamental
en la teoria de funciones analiticas de varias variables complejas (el lector
interesado puede revisar las referencias [4], [3], [5]). Por esta razén es
importante conocer como son los subconjuntos de C* para los cuales
una serie de potencia de varias variables sea convergente.

En el presente trabajo respondemos a la interrogante planteada,
caracterizando a los dominios de convergencia de una serie de potencias
de varias variables complejas.
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2. Algunos conceptos preliminares

En lo que sigue, C" denotaré al conjunto de todas las n-uplas z =
(z1, z2, - . . , 2n) de numeros complejos. Un polidisco abierto
(respectivamente, polidisco cerrado) en C", de centro a = (ay, az, . . .,
a,) € C*y poliradio r = (r1, r2, . . ., r) € (R*) (R* denota al conjunto
de los nimeros reales positivos), denotado por A(a, r) (respectivamente,
Ala, r]; es el conjunto definido por

Ala, ) ={z=(1,22...,220)€ C* |2,-q)| <7, ,V1<j<n}
Ala, r] = {z = (z1, 22, . . ., zn) € C™ |25 - qy| <1y, VI <j<n}

Observe que
A(a, r) = Dri(a;)XDra(az)X- - -XD.,n(an) y Ala, r] = Dr; [a1]X
Dr; [az]X- * *XDy, [ax]

En algunos casos conveniente considerar polidiscos extendidos, es
decir polidiscos en que alguna (o toda) componente de su poliradio sea oo.

A lo largo del presente trabajo, usamos la notacién de los multi-idices
de Schwarz: Un multi-indice n-dimensional @ es una n-upla de nimeros
enteros no negativos. La norma |Q| del multi-indice @ = (q1, q2, . . .,

qn) se define como |Q| = q1 + q2 + * - - + qn. El factorial Q! del
multi-indice @ = (q1, q2, . . . , g») se define por Q! = qi!gz! - - - g»! Sean
Q=0(q1,q2...,q)y @ = (a1, @, . .., Q) dos multi-indices, escribiremos
a<@Qsiysélosiq<q, para todo 1 <j < n. Significado anélogo tiene
las notaciones @ < Q, a2 Q y a > Q. Ademas, si z = (21, 22, . . ., 2Zn)
e C"yQ =(q1, q2 - - -, qn) €s un multi-indice, denotamos

29 =N 2% ... 2.

Una multi-sucesién de nimeros reales o complejos es una funcion
cuyo dominio es el conjunto de multi-indices y su contradominio es el
conjunto de los nimeros reales o complejos, en simbolos

a: N* —» K
QR Ha(Q) = ag = aq,,.q,
en donde N denota al conjunto de los enteros no negativos y K = R 6

C.

Decimos que ¢ € K es el limite de la multi-sucesion (ag) si y sé6lo
si.dado un € > 0, existe un N € N tal que |aq,.,q —c| < € siempre que
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q1; - - -, @n > N. Una multi-sucesién es llamada convergente cuando tiene
limite, en caso contrario la multi-sucesién es llamada divergente.

El lector puede verificar sin dificultad alguna que dada dos multi-
sucesiones convergentes entonces su suma, resta, multiplicacién y divisiéon
(siempre que el cociente sea distinto de cero) son convergentes.

A toda multi-sucesién (ag) en K, se le asocia la multi-sucesién de
sumas parciales
s: N* —» K

Qs = ¥ a,=
oa<Q o

% aal. \Oly
o

1 n

Decimos que la multi-serie ¥ ag es convergente siy soélo si la multi-

sucesion de sumas parciales (SQ% es convergente, es decir, existe un
c € K con la propiedad de que dado un € > 0, existe un N € N tal que

% g a(xl. ol Y
(o3 o,

siempre que qy, . . ., g, > N.

<€

Decimos que la multi-serie ¥ ag es absolutamente convergente si
Q

y sélo si Y |ag| es convergente.
Q

Las multi-series cumplen propiedades analogas a las series. Muchos
de los criterios de convergencia para series pueden ser generalizados a
multi-series. En particular, tenemos el siguiente muy util criterio de
convergencia.

Teorema 1 (Criterio de Comparacién). Sean (ag) y (bg) dos mulki-
sucesiones en K tales que

(1) |ag| < |bql|, para todo multi-indice Q.

(2) ¥ |bg| es convergente
Q
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Entonces Y aqg es absolutamente convergente.
Q

Para los fines que nos hemos planteado, las definiciones y
propiedades establecidas lineas arriba son suficientes. Para el lector
interesado en tener mas informacién sobre multi-series, recomendamos
la referencia [1].

3. Series de Potencia de Varias Variables Complejas

Sea (ag) una multi-sucesién de nimeros complejos y z9 € C". Una
serie de potencias de varias variables complejas, con centro en 29 es una
expresion del tipo

Y ag(z—2)°
Q20

Observe que para n = 1 tenemos la definicién usual de serie de
potencias de una variable compleja.

Para simplificar la notacién, de ahora en adelante, sélo consideramos
series de potencias centradas en el origen.

Definicién 1. Sea S= Y aqgz? una serie de potencias de varias variables

Q=0
complejas. El dominio de convergencia de la serie S, denotado por Ds es

el mayor subconjunto abierto de C" tal que la serie S es convergente, es

decir si U c C" es un abierto tal que S es convergente ¥V z € U, entonces
U c Dgs

Observaciones

1. a € Ds si y sélo si existe un polidisco A(a, r) € Ds tal que S es
convergente V z € Aa, 7).

2. El siguiente resultado es una consecuencia inmediata de
nuestras definiciones:
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“Sea S= ) agz? una serie de potencias convergente en el
Q20

polidisco A(0, R), con R = (R; -, Ry). Si 0 < 1 <RjV1<
J <m, entonces la serie converge absolutamente y uniformemente
en el polidisco cerrado A[0, 7], donde » = (ry, - -+, 7).

Una consecuencia inmediata de esto es que a € Dy si y sélo si
existe un r € (R*)" poliradio (con coordenadas suficientemente
pequenas) tal que la serie S es absolutamente y uniformemente
convergente en Ala; r] C Dg.

3. Sin = 1 entonces Ds es un disco abierto centrado en el origen.
En dimensién n > 1 {Ds es un polidisco?

Para responder a la interrogante planteada en la observacién 3,
vamos a introducir algunos conceptos.

Definicién 2. Sea S= Y ay2? una serie de potencias de varias variables
Q20
complejas. Definimos el conjunto

I‘s={7'=(7'1,"',"‘n)€ (Ra)n Z IanrQ<oo}_
Q=0

Observaciones
1. Tsc(R{)" donde R} = [0,+0d.
2. T5#9 puesto que (0,0, :--,0) e Is.
3. Sin = 1 entonces I's =[0,R[ 6 I's =[0,R] donde R es el radio de

convergencia de la serie de potencias S= Y} a,z™.
m=0

Proposicion 1. Si re I y 0<p<r (es decir 0<p;<r; V1<j<n, siendo
P =(py,...,pn) ¥ r=(n,...,1,)) entonces peT,.
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Demostracion

0< pQ <rQ, VQ multi-indice, luego 0 <|ag| p® <|ag|r?® para todo Q

multi-indice. Del Criterio de Comparacién se sigue que

S faglp? < 3 Jaglre <=
Q>0 Q>0

En consecuencia pe I[.

Corolario. Sear = (r, - - ,7rn) € I's. Siz = (21, * -+, 2n) € C" es tal

que |zj| <7, V1 <j<nentonces Y agz? esabsolutamente convergente.
Q20

Definicién 3. Sea S = ¥ agz?. La base del dominio de convergencia
Q20

de la serie S, denotada por Bs es el conjunto de todos los puntosr € (R} )"

(donde R} denota a los nimeros reales mayores o 1 uales que 0) que son
0 y
interiores a Is.

Observaciones
1.7 = (ry, -+, Ts) € Bg siy sélo si existen §;, - -+, én > 0
tales que si |p,— 1, | < § y p, 2 0 se tiene que p = (p1, * ",
pn) € I‘So

2. Bs es un subconjunto abierto de (R )"

3. Bs puede ser vacio. En efecto, es facil construir una serie de

potencias S tal que I's = (0, - - -, 0), por ejemplo S= Y Q!29.
Q>0
4. Sin = 1 entonces Bs = [0, R[.

A continuacién, vamos a caracterizar a los elementos r del dominio
de convergencia S.
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Proposicion 2. r € Bs si y solo si existe un (R )* con > tal que

T,E rs
Demostraciéon
(=) Sir = (r, -, r) € Bs, entonces existen 8, - - -, 8, > 0 tales
que
-l <8 vy 0,20= p(py,---, py) e Tk
’ 51 5n
Tomando 7'=(n +7,---,rn +7) tenemos que >y y

r'e (]1’1 _61,7'1 +51[X"'X]Tn _5n’ Tn +6n[) ﬁ(R(‘;)n

luego r’eTy.

(&) Supongamos que existe = (ry, - =+, 1) € (R§ )" con

r,>1,(1<j<n) tal que r’eTy.

Considerando §,=7-7r,>0(1<j<n), se tiene que si
P=(p1y, )€ AN =81,m +6,[ XX Ir, =8,,7, +8, DN (R ¢ )" entonces
0<p,<r+8,=7,V1<j<n, es decir 0<p<7. De la Proposicién 1 se

sigue que pely. De esta manera r € Bg.

El siguiente teorema caracteriza a los elementos del dominio de
convergencia en términos de su base.

Teorema 2. a = (a1, - * *, an) € Ds si y sélo si (Jai], - - -, |an|) € Bs.
Demostracion
(=) Seaa = (aj, " * *, ay) € Dg, por la Proposicién 2, es suficiente

hallar un 7’ =(r{,--,7,)€ (R{ )" con 7}, >|a,| (1< j<n) tal que '€ I's. Como
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ae Dg, existe un r = (ry, - -+, ra) € (Rj)" tal que S= Y apz? es
Q=0
absolutamente convergente en A(a, r) = Dy (a;) X - - X D, (an).

Dado 1 £j £ n, consideramos

roa, ry 1
r;:1a1+ d-Li=11+ 0~ ja,
| 2 all ! 2 la;
Ji J
r. 1 r
= | 4247 =a,+ J'>a].
2 a &
J
Luego v =(r{,--,1.)e (P )" satisface r;>a . V1<jsn
Por otro lado, si tomamos b = (b, * - -, by tal que
|
Y5 G5 : ; ‘ r .
b,=a,+5 -~(1<j<n), sesigueque b,-a, =<7, es decir be Ala,r).

a,|

Luego Y |ag|b®l<ce.
Q=0

Pero
N (l

r,a,
a;+ o ; 5
J 2 iajj

Eu ! ?u
| I A
IbQ|“inlb()l = [
\]',

g=1

=MD =09,

Jj=1

es decir Y 'a“(r)? <. Se desprende que r’e I,
Q=0

(<) Si (a,," ,a, )€ Bg entonces existe un r =(r/, ,re(F 1" con
r/>la,! V1< j<n tal que r’e I'g. Del Corolario de la Proposicion 1 se sigue

que si z€ A(0,r") entonces la serie de potencias ) anQ es absolutamente
Q=0

convergente.

Tomando &, <rj—a, (1<)<n) y haciendo o =(5,,--,0,)€ (R*)" se

sigue que A(a,8)C A(0,7). De esta manera Y agz? es absolutamente
Q:0

convergente en A (a, §). Hemos probado que a € Ds.
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Observacion

En dimensién n = 1, el teorema anterior nos dice que
ze Dg & |2Je By =0, R[ © ze Dg(0)

es decir, para serie de potencias de una variable su dominio de
convergencia Dg es el disco Dg(0).

4. Dominios de Reinhardt

Motivados en las propiedades que cumple el dominio de
convergencia de una serie de potencias de varias variables, es que tenemos
la siguiente

Definicién 4. Sea D C C" un conjunto abierto y denotemos por ST al
circulo unitario de C.

(1) Decimos que D es un Dominio de Reinhardt si y sélo si
(21,"',Zn)€ D Yy élr""gne S! ﬁ(élzl""ygnzn)e D.

(2) Decimos que D es un Dominio de Reinhardt completo si y sélo
st

(Zla""zn)e D Yy él"",gn € Dl(o)ﬁ(élzl,"'aénzn)e D.

(3) La base del dominio de Reinhardt (completo o no) D es el conjunto
Bp definido por

BD = {(Izl!a"'9|zn|) . (21""’zn)e D} Q(Ra )n-

Observaciones

1. En dimensién n = 1, tenemos que los discos D,(0) son dominios
de Reinhardt completos con base el intervalo [0, [ , mientras que
el anillo (abierto) A(0; r1, r2) centrado en 0 € C y de radios inferior
y superior 71, r2 respectivamente, el cual es definido como

AO;r,rm) ={zeC:r < |z| < 72}

es un dominio de Reinhardt (no completo) y su base es el
intervalo Jry, rof.
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2. Es inmediato de la definicién que todo dominio de Reinhardt D
C C~ satisface la siguiente propiedad:
z=(21,..,2,)€ D= S|zl|[0] X = X S|z[0] € D
en donde S I2,|[0] es el disco centrado en el origen y de radio |zj|.

3. Analogamente, todo dominio de Reinhardt completo D c C"
satisface la siguiente propiedad:
z=10(z1,...,2,) € D= A, |z1|, ... |2a]) € D

4. La base Bp de todo dominio de Reinhardt D C C" siempre esta
contenida en el dominio de Reinhardt. Mas aun
Bp = D N (R})"
es decir Bp es un conjunto abierto relativo de (R} )"

5. Es claro que la base de un dominio de Reinhardt no
necesariamente es un abierto de R™.

Acabamos de ver que a todo dominio de Reinhardt D C C" se le
asocia su base Bp la cual es un abierto relativo de (R} )™ A continuacion,
probaremos que lo reciproco también es cierto, es decir si nos damos un
B subconjunto abierto relativo de (R} )", entonces existe un dominio de
Reinhardt D c C" tal que su base es justamente B.

Proposicion 3. Sea B un subconjunto abierto relativo de (R§ )", entonces

D={(§lrly see &nrn) . (rly cee Tn) € Ba &1’ see y g‘n € Sl} - cr
es un dominio de Reinhardt cuya base es B.

Demostracion
Siz=(z,...,2s) € D entonces entonces por definicién del
conjunto D, existe (r1, ..., ) € By existen &, ... , &n € S! tal que z;

= §yrj, para todo 1 £j < n.

Dados {y, ... , {n € S!, se cumple

(Ciz1, ... 5 Cnzn) = (CiE1r1), ..., Cal(Enrn))
= ((§1§1) Tl ooy (z;n(E_m) o) € D

luego D es un dominio de Reinhardt.
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Por otro lado, sea s = (s, ... , s,) € Bp, entonces existe (21, ... , 2n)
€ D tal que s; = [2)], V 1 < j < n. Pero, por definicién del conjunto D,
deben existir un (ry, ... ,73) € By &y, ..., &, € S! tales que zj = &rj, para
todo 1 <j <n, luegos, = |z|= |&rj|= 1, es decir s € B, luego Bp C
B. El otro contenido es obvio.

Observaciones

1. La base Bp de un dominio de Reinhardt D C C" determina

completamente a D, por esta razén muchas propiedades de D
pueden ser deducidas de las propiedades de su base.

2. SiBp C (R{)"es la base de un dominio de Reinhardt completo
D c C» entonces se cumple
(ry, ... , ™) € B= [0, r] X... X [0, »,] c B.
La demostracién de esta propiedad es inmediata a partir de
nuestras definiciones, por esta razén la omitimos.

3. Cuando n = 2 la propiedad de la observacién anterior nos
proporciona una condicién geométrica muy sencilla para saber
si un dominio de Reinhardt es completo. En efecto, si existe un
(r1, r2) € B C (R} )2 tal que el rectangulo [0, ]1X[0, 2] no esta
contenido en B entonces B no puede ser base de un dominio de
Reinhardt completo.

4. Ya hemos visto que los discos son ejemplos de dominios de
Reinhard completos en C mientras que los anillos son ejemplos
de dominios de Reinhardt en C. Reciprocamente todo dominio
de Reinhard completo en C es un disco mientras que los
dominios de Reinhardt en C son uniones numerables de anillos
concéntricos, centrados en 0 € C.

La prueba de estas afirmaciones son consecuencia inmediata de
la propiedad establecida en la Observacién 2.

Por esta razén, en los cursos de una variable compleja es
innecesario considerar dominios de Reinhardt.

Para caracterizar los dominios de convergencia de una serie de
potencia de varias variables, nos falta atin otro concepto.
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Definicién 5. Sea B c (R*)* un conjunto no vacto.

1. El Conjunto Logaritmo de B, denotado por log B, se define como
log B = {(log 71, ... , 73) : (r1, ... , Tn) € B}.

2. Decimos que B es Logaritmicamente Convexo si y sélo si log B
es un subconjunto convexo de R™.

Observaciones

1. Si B =}y, 2l R* entonces log B =] log 1, log ra[ € R. Se deduce
que los intervalos contenidos en el semieje positivo son conjuntos
logaritmicamente convexos.

2. log B es un conjunto homeomorfo a B.

3. No es dificil probar que B < (R*)" es un conjunto

logaritmicamente convexo si y sélo si se cumple la siguiente
propiedad

(ry, ... , ™), (1, ..., 8,) € B=

(@, 1 ¥s%) e B, Vae[0,1]

Estamos ahora listos para dar la caracterizacion prometida.

Teorema 3. Si S= Y agz? es una serie de potencias de varias variables
Q20

entonces su dominio de convergencia Ds es un dominio de Reinhardt
completo con base Bgs logaritmicamente convexa.

Demostracion
Si (z1, ... , zn) € Ds entonces por el Teorema 2 se tiene que
(|z1], .-, |za|) € Bs.
De la Proposicién 2 se sigue que existe un r = (ry, ... , 1) € I's tal

que rj; > |z|, (1 £j < n).
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Sean &, ... , & € Di[0] entonces |§,z, | < || < rj, para todo 1 <
J < n. De esta manera (|§1z1], ..., |&w2n|) € Bs y usando nuevamente la
Proposicién 2 tenemos que (§;21, ... , &x2n) € Ds. Esto prueba que Dg es

un dominio de Reinhardt completo.

Por otro lado, si (ry, ..., ), (s1, ... , sn) € Bs entonces existe un
t=1(t,..,t) € I'stal quet, >r yt >s,, para todo 1 <j < n. Pero
para cualquier 1 <j < n se tiene

T, +8
1/2 J1/2 _ 172 <« 1979,
r,' s, =(rs,) S—z—<tJ

esto implica que (y/7;s;, ..., /7,8, )€ Bs. Asi, hemos probado que Bg es
logaritmicamente convexo. |
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RESUMEN

Aqui el estudio del Gradiente Generalizado es dirigido para
condiciones no diferenciables, para esto, se hace un adecuado
desarrollo del Gradiente Generalizado en sociedad con otras
herramientas, obteniéndose asi el propdsito deseado, este estudio se
realiza en general en un espacio de Banach. También se presenta una
Aplicacién, ejemplos y gréficos ilustrativos para su mejor

entendimiento.

* Universidad Nacional de Ingenieria. Facultad de Ciencias.
** Asesor.

59



REVISTA DE LA FACULTAD DE CIENCIAS - UNI

Introduccion

En el presente trabajo se desarrollara la Teoria y el Calculo del
Gradiente Generalizado.

A partir de la Derivada Direccional y del Gradiente, que son términos
ya conocidos, se pretende generalizar los mismos bajo ciertas condiciones.
Comenzando con el caso de una funciéon Localmente Lipschitz de valor
real definida en un espacio de Banach. Luego cuando la funcién es
continuamente diferenciable el Gradiente Generalizado sera la derivada,
o cuando la funcién es convexa se le asociaréa al subdiferencial del analisis
convexo.

Se establece una serie de Calculos Basicos que seran importantes
para el desarrollo de los siguientes capitulos.

También se desarrollara una Teoria Geométrica Asociada de Conos
Tangentes y Normales, y veremos la relacién entre estos conceptos y su
contraparte en el caso no diferenciable y en anélisis convexo. Ademas
trataremos una definicién extendida del Gradiente Generalizado a partir
de funciones Lipschitz o No Lipschitz.

Finalmente, ilustraremos el tema mediante una Aplicacién en
Optimizacién y no Diferenciabilidad (siendo el gradiente generalizado una
alternativa para condiciones no diferenciables).

1. Conceptos preliminares

Consideremos el Espacio de Banach X cuyos elementos x seran
vectores o puntos.

1.1 La condicién Lipschitz

Definicion 1.1.1 Sea y - X un subconjunto de X. Una funcién

f:Y >R sedice que satisface la condicién Lipschitz (en Y), si para algtn
K > 0, se tiene

fy)-fR)<K[ly-2| Vy,zeY

ésta es referida como una condicién Lipschitz de rango K.
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Definicion 1.1.2 Se dice que f es Lipschitz (de rango K) préximo
a x si, para algin € > 0, f satisface la condicién Lipschitz (de rango K)
en el conjunto x + B (es decir, dentro de una é&-vecindad de x).

1.2 La derivada direccional generalizada

Definiciéon 1.2.1 Sea f Lipschitz préximo a x, sea v € X cualquier
otro vector. La Derivada Direccional Generalizada de f en x en la direccién
v, denotada por f°(x; v), es definida de la siguiente manera:

f°(x;v) =limsup fly+tw) - f(y) ’

yorx t
tlo

donde y € X, t > 0.

1.3 El Gradiente Generalizado

Definicion 1.3.1 El Gradiente Generalizado de f en x, denotado por

af(x)CX', es un subconjunto de X", dado por
f (x)={leX [ fo(x;v) 2 (C,v), Vve X},

Denotaremos por [;]. la Norma en X':

€], :=sup{(¢,v): Vve X, [v] <1},
y B, denota la bola unitaria abierta en X.

Proposicion 1.3.1 Sea f Lipschitz de rango K préximo a x, entonces:
(a)d f(x)c X" es un subconjunto no vacio, convexo, débil”
compacto de X' y [(|. <K, V{ € d f(x).

(b) Vve X, se tiene f°(x;v)=max{({,v):{e€df(x)}.

Ejemplo:

Calcularemos el gradiente generalizado de la funcién flx) = |x| en
X = R, la cual es Lipschitz por la desigualdad triangular (|f(x) - fly)| =

lx=lyll<lx-y].
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1.4

d f(x) o la funcién f°(x; .), cada una es obtenida de la otra. Ahora
caracterizaremos los conjuntos convexos cerrados por sus funciones

Sixz >0

ly+ v{ Y {vsinO

fo(@;v) = lim sup=———= vsiv<0Aay+tv20

Y- x
tl0

= fo(x;v)=v=9 f(x)={{/v=({,v) Vv} = 3 f(x) ={1}.

Six <0
fo(x"v)zlim supMLyl_: —vsiv20Ay+tv<0
, yox -vsiv<0
tl0

= fx;v)=-v=0d f(x)={{ (-v)2({,v), Vv} = 9 f(x) = {-1}.

Siz =0

o _ ly+ vi Y (vsiv>0
F0) = hr?jouP { vsiv<0

tlo

= f0v) = v= 9 f(0)={{/|v[2({,v), Vv} = d f(0)=[-1, 1].

Funciones Soporte

Se nota claramente que la Proposicién 1.3.1 es equivalente a conocer

soporte.

Soporte es definida en X™*, si X ¢ X™* un subconjunto de X"*, entonces

Definicion 1.4.1 Sea Y c X® un subconjunto de X', su funcién

V xe X se tiene:

. ’, ’ ok
convexos de X, y sean Y, Ac X" subconjuntos no vacios, débil’-cerrados,

oy (x):=sup{({,x): { € X}.

Proposicion 1.4.1 Sean C, D c X subconjuntos no vacios, cerrados,

convexos de X', entonces:
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a) CcDeoc(l)<opd),VieX .
b) YcAoos(x)<o,(x), Ve X.

1.5 Derivadas y Subderivadas

El principal resultado en esta Seccién es que d f se reduce a la

derivada si f es continuamente diferenciable, y al subdiferencial del analisis
convexo si f es convexo.

1.5.1 Derivada Clasica

Definicién 1.5.1. Sea F : X — Y una funcién de X hacia otro espacio
de Banach Y. La usual Derivada Direccional (unilateral) de la F en x en
la direccién v es

F(x +tv) - F(x)
t

F’(x;v):=1lim
tlo

Definicion 1.5.2. Se dice que F admite una derivada de Gateaux en
x, un elemento en el espacio £ (X, Y) de funcionales lineales continuas

de X hacia Y denotado por D F (x), si I F'(x;v),VveX 'y
F'(x;v)=(DF(x),v.)

1.5.2 Diferenciabilidad Estricta

Definicion 1.5.3. Se dice que F admite una Derivada Estricta en
x, un elemento de £ (X, Y) denotado por DF(x), tal que Vv se tiene

lim TY+H=FY _ (p, F(x),0),
Yo
tlo
y que la convergencia es uniforme con respecto a v en conjuntos

compactos (la cual es verdadera, si F es Lipschitz préximo a x).
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Proposicion 1.5.1. Sea F una funcién en una vecindad de x hacia

Y, y sea { un elemento de £ (X, Y), las siguientes afirmaciones son
equivalentes:

(a)F es estrictamente diferenciable en x y D F (x) = {
(b)F es Lipschitz préximo a x, y Yve X se tiene

lim F(y"'tv)_F(y) =<C,v>'

Yo t
tl0

Corolario 1.5.1. Supongamos que F es continuamente diferenciable
en x, entonces F' es estrictamente diferenciable en x y Lipschitz préximo
ax.

Proposicion 1.5.2 Sea f Lipschitz préximo a x y admite una
derivada de Gateaux D f(x) (Hadamard o Estricta), entonces

D f(x)e d f(x).

Ejemplo:
Consideremos la funcion

Fla) = {xz sen(%) six#0

0 six=0

Probaremos que f es Lipschitz préximo a 0, calcularemos 9 f(0) y
verificaremos que D f(0)e d f(0).
Veamos que f es Lipschitz préximo a 0.

f@) - fO) _ limxsen% =0= f es diferenciable en 0, y

como f(0)= Ll—% x-0 -0

ademas f’(0) se nota que es acotada en una vecindad de 0

= f es Lipschitz préximo a 0.

Calculando 0 f(0)

fly+tv)- f(y)
t

Como f°(0;v)=lim sup
y—-0
tl0
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= f°(0;v) =limsup
—0
o

1 1

+ tv)? = |-4% sen| =
(y+tv) sen(va) Y n(y)
t b

aplicando el Teorema de Lhospital respecto de t, tenemos

-

= f°(0;v) =lim sup 2v(y + tv) sen .
t—0 Yy +

1
+ (y + tv)?
tv) (y+1tv) cos(y+tvj(y+tv)2
tlo

(a3} = 1 r_1 S P
=% F (O,v)—-hn;joup 2v(y + tv) sen\y+tv)+cos(y+w)( V),

tlo

ahora hacemos lo siguiente, sea

B 1 3 1
g =2v(y + tv) sen\y+tv) y h= vcos(y+tv}

por propiedad de limites se sabe que
lim sup h + lim inf g < lim sup (h + ¢g) < lim sup h + lim sup g,

para nuestro caso lim infg=1im sup g=0,

y—0 y—0
td0 tlo
41s —1=<cos <1A-1Z<-cos <1,
ademas ( y+ tv) (y o tv) luego

Si v20=lim sup —vco L = lim sup —co 1 =, y
y—0 y+tv y—0 yt+tv
tlo tlo

: : 1 : 1
Si v<0=lim sup —wvco =—v lim sup —co = -,
y—0 y+tv y—0 y+to
tlo tlo

luego por el Teorema del Sandwich

{v siv=>0

- siv<0=>f 0 v) =[],

= f°(0; v)=1lim sup (h+g) =
y—0

tlo

=3 f0)={/|v|=, ¥V v}=20 f(0)=[-1,1].
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Calculando D f(0).

Como (D f(x), v)= lim flax+ tt;) - f(x)

tzvzsen(l)
= (D f(0),v) = lifgl f(tv)t—f(O) =lim t =lim tv? sen(l)=0
t

tl0 t tl0

= (D £(0),v)=0 Yve R= D £(0)=0.
— D f(0)=0¢€[-1, 1]1=0 £(0).

Proposicion 1.5.3 Si fes estrictamente diferenciable en x, entonces
f es Lipschitz préximo a x y 9 f(x)={D,f(x)}.

Proposicion 1.5.4 Si f es Lipschitz préximo a x y 9 f(x)={(},
entonces f es estrictamente diferenciable en x y D f (x) = (.

1.5.3 Subdiferencial

Definicion 1.5.4 Sea U c X un subconjunto convexo de X. Como
sabemos, una funcién f : U - R se dice que es convexa, si

Vx, ye U, VA€ [0,1] se tiene
fAz+(1-Dy) <A (x)+1-A)f(y).

Definicion 1.5.5 Sea UC X un subconjunto de X. Sea f: U —
R una funcién (convexa), el Subdiferencial de f en x es definido por el

conjunto de (e X* que satisfacen

f)-f@)2({,y-x),VyeU.

Proposicion 1.5.5 Cuando f es convexa en U y Lipschitz préximo
a x, entonces 0 f(x) coincide con el subdiferencial en x, en el sentido del
analisis convexo, y f ° (x; v) coincide con la derivada direccional
Fa; ),V o
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Ejemplo:

Determinar el gradiente generalizado de la funcién f : R* - R
definida por

f(xy,x9,...,x,)=max {x, /i=1,2,..., n}.
Vemos que f es Lipschitz préximo a (x1, x2, ..., Zn).

Veamos que f es convexa

Sean (xj, X2, ..., Tn), (Y1, Y2, ..., Yn) € R* y A € [0, 1], asi

f(A- (xl) X2y ooy xn) + (1 = A') (yl; Y2, .oy yn) =

max {Ae; + 1 -ANy,/i=12,..,n} <

max {Ax; /i =1,2,..,n} + max {1 -AN)yi/i=1,2, .. n}
Amax {x,/i=1,2, ...n} + (1 -Amax {y, /i =1,2,..,n} =
A f (x1, 25 ooy o) + (1 = A) f (Y1, Y2, ..., Yn) = f €s convexa.

Sea I(x) = {i / fi (x) = f(x)} los indices donde el maximo f es
obtenido.

Calcularemos f’(x; v).

max{x, + tv,} - max{x, }
Sf'(x;v) =lim—* :
tlo t

aplicando el Teorema de Lhospital respecto de t, se tiene

= f’(a; v) =lim max{v; } = max v;
£ (s tlo ielz) . iellx)

ademas como f es Lipschitz y convexa
= por la Proposicién 1.5.5 f°(x;v) = f'(x; v).

= d f(x)={Ce R"/mlz(ax) v, 2({,v), Vve R"}.

Veamos la ley de formacién del 9 f(x).

Si n=1 tenemos:

max v, =v" 2, v, VveR =v" 2({v" )= =1
wi(x
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Si n=2 tenemos:

2
max v, Z(C,v>=§ ¢.vi donde ¢ =(},L5), v =(v1,05)

w€el(x)

Sii=1,2¢€I(x).

Supongamos que v; 2 v2y {; > 0
= max v, =v; 2§;v; + {0, 2§ v, + {50,

1€l(x)

=({) +{2)ve = v 2(0; +E3) vs.

= tenemos dos casos:
Si v 2(8;+8) vV, =0+8,=1,

Si (C1+§2)U2 2U2,V'U2=>C1+Cg =1

Continuamos con v; 2 v2
= Iax v, =v) 2§10 + 00, =G vy + v, — (10,

= V] —Vy ZCI(UI —v2)=>12C1,

ademés V1 Zglvl +C2'Ug =1 -gzvz =

=>(Ul—1)2)§220=>C220=>CZS1.
={=(0,0,)/8+8,=1,{,20 donde i = 1, 2 € I(x)

ademas {, =0 si ig I(x).

Finalmente el resultado general sera:

af(x)={(C1’§2a'--agn)/C1 207 z ;1=1;§1=03i ?,EI(:I:)}.

w€l(x)
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2. Calculos basicos

2.1 Relaciones fundamentales

Proposicion 2.1.1 (Multiplo escalar)

V s € R, se tiene

d(s f)(x) =50 f(x).
Proposicion 2.1.2 (Extremo local)

Si f posee un minimo local o0 un maximo local en x, entonces

0€e d f(x).

Proposicion 2.1.3 (Suma finita)

0 (i ft)(x)c i d f,(x).
1=1 1=1

Corolario 2.1.1 En la Proposicién 2.1.3 tenemos la igualdad si todas
las funciones f; son estrictamente diferenciables en x.

Corolario 2.1.2 V s, € R se tiene

: (is,f, ) (x)C 35,0 f,(x)
1=1 i=1

Tenemos la igualdad si todas las funciones f, son estrictamente
diferenciables en x.

Observacion:

En la Proposicién 2.1.3 tenemos la igualdad si cada funcién f, es
continuamente diferenciable en x.

Por el Corolario 1.5.1 = cada funcién f, es estrictamente
diferenciable en x, luego se procede como en la demostracién del Corolario
2.1.1
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= Se obtiene la igualdad en la Proposicién 2.1.3

Ademas de la Proposicién 1.5.3 0 f,(x) ={D,f,(x)}={D f.(x)}, la
Derivada.

2.2 Regularidad de Funciones

En el calculo de férmulas del gradiente generalizado a veces
encontramos inclusiones como la de la Proposicion 2.1.3, podemos agregar
hip6tesis para llevar cada regla de incluisén a igualdad. Como en la
observacién anterior, se nota que la condicién continuamente diferenciable
es fuerte, pues el gradiente generalizado es la derivada. Se desea una
condicién menos extrema, una funcién que cubra el caso no diferenciable,
una condicién util es la siguiente:

Definicion 2.2.1 f es Regular en x si:

i) Existe la derivada direccional usual unilateral f"(x;v) V v.

i) Vo f'(x;v)= fx;v).

Corolario 2.2.1 Si cada f, es regular en x, entonces tenemos la
igualdad en la Proposicién 2.1.3. También V s; >0 tenemos la igualdad
en el Corolario 2.1.2.

2.3 Teorema del Valor Medio

Teorema 2.3.1 (Lebourg). Sea x,ye X, y supongamos que f es
Lipschitz en un conjunto abierto conteniendo el segmento de linea [x,

y], entonces existe un punto ue (x, y) tal que

fy) - f(x)e (0 f(u), y—x)
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3. Conceptos Geométricos Asociados

Definimos una funcién distancia d¢ no diferenciable, globalmente

Lipschitz. Con el dd. definimos un nuevo concepto de Tangentes y

Normales en un conjunto C. Estas Tangentes y Normales no dependen
de dc. Veremos que las nuevas Tangentes y Normales, se reducen a
conocer una de ellas en andlisis convexo y en el caso no diferenciable.

3.1 La funcién distancia

Definicion 3.1.1 Sea Cc X un subconjunto no vacio de X, y

consideremos la funcién Distancia dq(.): X — R definida por

de(x)=inf{|x —¢c|: ce C}.

Proposicion 3.1.1 La funcién d¢ es global Lipschitz en
X:lde(x)-de(y) < e -yl

3.2 Tangentes

Definicion 3.2.1 Supongamos que x€C. Un vector ve X es

tangente hacia C en x si d2(x;v)=0. El conjunto de todas las tangentes
hacia C en x es denotado por Tc¢(x) es decir

Te(x)={ve X /d¢(x;v) =0} .

Propiedades de Tc¢(x): Cono convexo cerrado en X.

3.3 Normales

Definicion 3.3.1 Sea M un cono convexo. El cono polar de M
(Negativo) es:

M°={se X" /(s,v)<0, V ve M}.
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—

Definiciéon 3.3.2 El cono normal hacia C en x, es la Polaridad de
Tc(x):

Nco(x)={¢e X" /(¢ v)<0, V ve Te(x)}.

Proposiciéon 3.3.1

Nc(x) = Cl{ U wdc(x)},

A =0

donde cl denota la clausura débil’.

Observacion:

ddc(x) se reduce a Nc(x) el cual es cerrado débil” por la Proposicién
3.3.1. El cono polar hacia Tc(x) es cerrado débil® (N¢(x)) cono convexo

generado por dd.(x).

Propiedades de N¢(x): Cono convexo en X'.

Definiciéon 3.3.3 Si C es convexo, se tiene un concepto bien

definido de vector normal: {e X' se dice Normal hacia C en x, si

(,x-c)20V ceC. (en el sentido del andlisis convexo).

Proposicion 3.3.2 Si C es convexo, entonces N¢(x) coincide con el
cono de normales en el sentido del anélisis convexo.

3.4 Caracterizacion Intrinseca de las Tangentes

Teorema 3.4.1 Un elemento ve X es tangente hacia C en x si, y
s6lo si, para cada sucesion {x,} cC convergente hacia x y la sucesién
{t,} ©(0, =) decreciente hacia cero, existe una sucesién {v,} c X que

converge hacia v tal que x, +t,v, € C para cada i.
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3.5 Regularidad de Conjuntos

Se establece aqui la relaciéon entre el concepto geométrico ya
definido y las nociones en el caso no diferenciable, se requiere la
regularidad de conjuntos, la cual utiliza la regularidad de funciones
tratadas en el Capitulo 2.

Definicion 3.5.1. Sea Kc(x) el cono contingente de tangentes
hacia un conjunto C en x. (v € X). Un vector v € Kc¢(x) si, y sélo si,

Ve>0,3te(0,e)Arwev+eB/x+twe C (donde w es un punto y necesa-
riamente x € cl O).

Observacion: Tq(x)c Ko (x)

Definicion 3.5.2 El conjunto C es regular en x si Tc (x) = K¢ (x).

Veamos ahora como T¢ y N¢ son obtenidos a partir de condiciones
de regularidad.

Teorema 3.5.1 Sea f Lipschitz préximo a x, ahora supongamos que
0¢0df(x). Si C={ye X/f(y)<f(x)}, entonces se tiene

{ve X/ fo(x; v) <0} C Te(x).

Ademas, si f es regular en x, entonces se tiene la igualdad en esta
ultima inclusién, y también C es regular en x.

Corolario 3.5.1

Ne(x)c U 9 f(x).

A 20

Si f es regular en x, entonces se tiene la igualdad en esta ultima
inclusién.
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3.6 Epigrafos

Funcién distancia dc nexo entre la teoria analitica del Gradiente
Generalizado y la teoria Geométrica ya definida. Un vinculo diferente a
través del Epigrafo.

Definicion 3.6.1 El Epigrafo de una funcién f: X — R es el siguiente
subconjunto de XxR:
epi () := {(x, r) € XxR / flx) < r}.

Se observa que epi(f) captura toda la informaciéon por sobre la
funcién f.

Las siguientes relaciones se obtienen gracias al epi(f).

Teorema 3.6.1 Sea f Lipschitz préximo a x, entonces

(i) El Epigrafo de f ° (x; .) es Tep(p) (x, flx)), es decir (v, 7) € Tepip)
(x, flax)) si, y sbélo si r > f° (x; v).

(i1)f es regular en x si, y sélo si epi(f) es regular en (x, f(x)).

Corolario 3.6.1 Sea (€ X es tal que {€df(x) si, y sélo si
(§7 -De Nepz(f)(x7f(x))o

Observacion:

Sea f: R — R una funcién continuamente diferenciable en R, segin
el Corolario anterior, el vector (f’(x), —1) es normal hacia el grafo de la
funcién f en (x, f(x)).

3.7 Una Extension del Gradiente Generalizado con Funciones
Lipschitz o No Lipschitz

Definicién para una funcién f Lipschitz o No, del 0 f . El Corolario

Anterior garantiza que esta nueva definicién es consistente para f
Lipschitz.
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Definicion 3.7.1 Sea f: X > R U {—oo} U {40} es finito en x. Se

define

df(x)={le X /¢, -1)€ N p(x, f(x)}.

Ejemplo.- Calcular d f en los puntos indicados.

(-1.1)

Nota: Los vectores de inclinacion diagonal forman un dngulo
de 45° con la horizontal.

En el punto A: f es Lipschitz en A, df={-1} ademaés f
continuamente diferenciable.

En el punto B: f es Lipschitz en B, y ademas se nota que { tiene
un recorrido de valores de { =0 hasta { =1=9 f =[0, 1].

En el punto C: fno es continua, es decir no es Lipschitz en C, pero
sin embargo todavia se puede usar la definicién anterior para el caso lateral

izquierdo, asi d f =[-1, + <), pues se tiene una pendiente vertical.

Aplicacion

Ejemplo en Analisis no Diferenciable y Optimizacidn, un ajuste de
datos puntos.
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Ejemplo

Considerando el problema de determinar la linea recta en el plano
X - Y que mejor ajuste los datos puntos. Para una recta dada y = mx +
b el error e, en el i-ésimo dato punto (x;, ¥,) es definido por los valores
de la recta aproximante y los valores dados |mx; + b - y;|. Una

aproximacién lineal requiere que la inclinacién m y el intercepto b
N

minimicen la funcién ) e, no diferenciable.
1=0

Especificamente, para N + 1 datos puntos (0, 0), (1,1), ... (N - 1,
N -1) junto con (N, 0), consideremos determinar la recta que mejor ajuste
estos datos. Minimizar:

f(a,ﬁ>=|aN+ﬁ|+'§1|m+ﬁ—il-

En donde la funcién f,,(a,pB) es definida por f.x(c, B)=|ac + B -k,
ésta es la composiciéon de g y F, donde g(y) = |y|, F(o, f) = oc+p - k.

Como f es no diferenciable, resolveremos el problema en base a lo
previamente estudiado.

Calculando DF (a.f).

(DSF(a, B),’U) = llm F((a” ﬂ’) + t(v17v2)) —_ F(al’ ﬂ/) _
(a',ﬁ’t)l—(;(a,ﬂ) ¢

(o' +tvy))c+ B +tv, —-k-a’c- B’ +k

(a,B)-la,B) t
tl0

=VC+Vy = <(C,1), (vl7v2 )>

= D,F(e,8)=(c,1). = F es estrictamente diferenciable en (a, f)

= por la Proposicién 1.5.3 F es Lipschitz préximo a (o, ). Y como
g es Lipschitz
= goF es Lipschitz préximo a («, f).

= fek (@, B) = goF(a, f) = |ac + B - k| es Lipschitz préximo a
(a, P).
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Calculando 9 f.x (&, B).

Si e + B-k =0.

fouleBv= lim @ rtme (B tm) “K-joret Bok,

(a’,B)-(a,B) t
tl0

(€:v)

c+pB -k +v,y) —|lac+ B’ -
— lim sup e + B’ -k +t(vc+v,)| —|ac+ B’ -k

(a’,B)>(a,B) t
tlo

=|vic+v,|2(C,v)
= 0 fex(a, B) ={Alc, /A <1} ()

N-1
Sabemos que f(o,B)=laN+p|+ Y li+B -1 y
1=1

fex(o, B) =loc + B~ K.

Para ac + -k = 0 (el anélisis se realiza en esta recta), 3(«, ) que
N
minimiza f = por la proposicién 2.1.2 0€d f(a, ), donde f= 2%) Tin

(sumatoria sélo respecto a i; k € Z).

N N
Ademis, por la proposicién 2.1.3 a(%ft.kj(a’ﬁ)c %afl,k(a»ﬂ)

_ N N
=0€e Y dfix(a,B)=3 A(i,1) ésto de (*)
1=0

1=0

_ N-1
=0=Ay(N, D+ Y A,4,1) (**)

1=0

f es convexa pues f(Ala,B)+(1-A)m, n)<Af(,B)+(A—-A) f(m,n). Si
0€0 f(a, ) y como f es convexo

= f(f,s)- f(a,B)= <6, (r,s) —(a,ﬁ)) YV (r,s)e U (subdiferencial del andlisis
convexo).

= f(r,s)> f(a,B) V (r,s)e U = f alcanza un minimo local en (&, f).
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L}

Segun nuestros datos puntos, mediante un anélisis el punto
(¢ =1, B = 0) minimiza f.

= k=c= larectay = x es la solucién del problema.

Como un ejemplo, para N = 3, se tiene que:

Se descartan las rectas verticales, pues pasan por a los mas un
punto y producen un error grande.

Se descartan las rctas horizontales, pues pasan por a los més dos
puntos y produce un error = 3.

Se descartan las rectas de pendiente negativa, pues pasan por a
los mas dos puntos y producen un error grande.

Nos damos cuenta que la recta adecuada es y = x pues pasa por
tres puntos y ademas produce un error = 3 (el méas 6ptimo), las
otras rectas producen errores grandes y sélo pasan por a los mas
un punto. )

x=m N = 3
e 1 .2 92
®p | yB |3
3
Caso Recta Vertical Caso Recta Horizontal
x-1 B0
e 2 y=x
/% xe By=0
,7;\ <0 °3
Caso Recta de Caso Recta Solucién
pendiente negativa

Se nota que (**) es una condicién necesaria para la recta

x(a=1,08=0).

=Ay=1AA|<1 (G =0,.., N=-1)
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Si N = 1 tenemos A;(1,1)+ A, (0, 1)=0, donde AM=1=1=0,

asi, no se satisface (**).

Si N = 2 tenemos A,(2,1)+4(9,1)+ A,(1,1)=0, donde

Ay, =1= A; =-2, asi, no se satisface (**).

Lo verificaremos para N = 3.

— 2
=0=A33, 1)+ A,G,1) =43, 1)+ 40, 1)+ A;(1, 1)+ A,(2,1),

1=0

donde 13 =1=>0=3+A'l +2/12 /\0=1+A,0 +A.1 +A,2;
para Ay =1,4 =-1 y A, =-1 se verifican estas dos ultimas ecuaciones.

= 3 A,s que satisfacen (**). Si N>3= 3 A,s que satisfacen (**).

Conclusiones

Algunos estudios en Analisis, que estan envueltos sobre hipétesis
de funciones continuamente diferenciables o diferenciables, pueden ser
desarrollados también bajo condiciones no diferenciables, las cuales por
ejemplo son utilizadas en la Optimizacién, tal y como ocurre en la
Aplicacién anterior.

El estudio del Gradiente Generalizado nos permite tener una
alternativa de céalculo para con las funciones no diferenciables, pues sus
distintas propiedades, calculos bésicos y asociaciones geométricas, nos da
la posibilidad de afrontar problemas de optimizacién con estas
alternativas.

En general podemos calcular el Gradiente Generalizado de una
funcién. Cuando esta funcién es continuamente diferenciable su calculo
se simplifica, como se observa a lo largo de este trabajo en algunas
observaciones. Por otro lado cuando se tiene una condicién menos fuerte,
(no diferenciable), ésta se calcula como se ha demostrado en sociedad con
otras herramientas (Tangentes, Normales, Regularidad de Funciones y de
Conjuntos, Epigrafos, etc.), tal y como se describe en el Capitulo 3. Y
cuando la funcién es convexa se le asocia al subdiferencial de analisis
convexo.
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Un importante resultado es que el Epigrafo de una funcién nos

permite una relacién directa entre las Normales, Tangentes, Gradiente
Generalizado y la Derivada Direccional Generalizada, pues conociendo una
de éstas, se pueden obtener las demas. Gracias al Epigrafo, se pudo
establecer una extension de la definicion del Gradiente Genralizado.
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RESUMEN

El objetivo del trabajo es determinar la composicién quimica de un
arreglo de tri-capas magnéticas de Lags5Srg4sMnO3/SrTiO3/
Lags5Sro45sMnO3 en funcién de la profundidad, aplicando las técnicas
de espectrometria de fotoelectrones y espectroscopia de electrones
Auger. Se estudiaron dos muestras diferentes. En una de ellas la
tri-capa magnética crecida sobre MgO habia sido esculpida por
métodos de litografia 6ptica para formar contactos eléctricos. En
éste caso encontramos que el litografiado habia resultado defectuoso
por un error en la calibracién de los tiempos de grabado iénico
utilizados. En la segunda muestra se encontré que el método de
sputtering no fue adecuado para investigar posibles efectos de
interdifucién quimica en las interfases de estas muestras debido a
que el tamano de la regiéon superficial danada por el propio
grabado iénico resulté demasiado grande comparada con los
tamanos que interesan para el estudio.
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Introduccion

En los ultimos diez anos, se han producido enormes avances en la
fabricacion e investigacién de nanoestructuras magnéticas artificiales. Se
ha logrado confinar artificialmente materiales a bajas dimensiones —
puntos, hilos y capas - dando lugar al descubrimiento de nuevos
fenémenos fisicos. El fenémeno de magnetoresistencia gigante,
magnetorresistencia colosal, el desarrollo de junturas tinel y la inyeccién
de espin son los resultados mas asombrosos obtenidos en este campo de
la Fisica donde se mezclan el magnetismo con el transporte electrénico.
Un campo de rapido desarrollo en este drea es el denominado
«espintronica», en el cual dos grados de libertad, la carga y el espin, estan
estrechamente ligados y son utilizados simultaneamente para crear nuevas
funcionalidades. Tipicamente, los espesores que son de interés para la
espintrénica son de unos 400= para las capas de manganita y de unos
10-50 = para el separador. El objetivo del estudio es determinar la calidad
de las interfases en cuanto a la posible existencia de difusién quimica o
agujeros en la capa de titanato de estroncio (pin holes) que conecten las
capas de manganita (ya no seria una juntura tunel). Para realizar este
estudio se combinaron las técnicas de espectroscopia de fotoelectrones
(XPS) y espectroscopia de electrones Auger, con la técnica de grabado
i6nico (sputtering).

Espectrosocopia de Electrones

Cuando se irradia un material con fotones, electrones o iones éste
emite electrones en el rango de bajas energias (5-2000 eV) que contienen
informacion sobre la composicién quimica, la estructura electrénica, la
estructura cristalina y las excitaciones de la muestra. Existe una variedad
de técnicas experimentales basadas en la deteccion de los electrones
emitidos disenadas para extraer esta informacién, entre las cuales se
encuentran la espectroscopia de fotoelectrones y la de electrones Auger
[1]. En la figura 1 vemos el esquema del equipo usado en espectroscopia
de electrones. La muestra se irradia con haces de fotones o electrones
monocromaticos y se mide la distribuciéon de energias cinéticas de los
electrones emitidos, para lo cual se utilizan analizadores electrostaticos.
Existen distintas geometrias para estos analizadores siendo las mas usadas
la geometria cilindrica, CMA por sus siglas en inglés (Cylindrical Mirror
Analyser) o como es nuestro caso dos hemisferios concentricos, CHA
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(Concentric hemispherical Analyser). El resultado de la medicién es el
numero de cuentas (electrones) en funciéon de la energia cinética

Nro de cuentas

fotones, e-
Energia cinetica
multiplicador
V+
N
Muestra
Analizador

Figura 1. Esquema de un experimento de espectroscopia de electrones.
La muestra es irradiada con fotones o electrones, emitiendo electrones
caracteristicos de la superficie, los electrones pasan a través de un
analizador de energia para obtener un espectro de la distribucion de
electrones emitidos en funcion de su energia cinética.

Las técnicas de espectroscopia de electrones son utiles para el analisis
superficial de la muestra porque, como puede verse en la Figura 2, los
electrones con energias entre 5 — 2000 eV tienen un rango de penetracién
(longitud de atenuacién) menor que 20 =. Un electrén pasando a través
de un sélido puede perder energia de diferentes maneras que determinan
la distancia recorrida dentro del sélido. La dispersién con fonones
podemos despreciarla ya que produce cambios muy pequenos en la
energia cinética. Los principales procesos inelasticos son la excitacion de
plasmones, la excitacién de electrones de la banda de valencia, y la
ionizacién de los niveles de las capas internas de los 4&tomos que
constituyen el sélido. El ltimo proceso tiene una seccion eficaz pequena
comparada con los otros procesos y su camino libre medio es
generalmente dos 6rdenes de magnitud mas grande que el camino libre
medio de los otros dos procesos.

El grado de atenuacién para electrones emitidos desde el substrato
con una determinada energia que atraviesan una pelicula de espesor d
es igual a exp(-d/A), donde A es la longitud de atenuacién.

83



REVISTA DE LA FACULTAD DE CIENCIAS - UNI

A

100+

101

: E
1 Y ng . 5 v —
1 10 100 1000 10000 eV

Figura 2. Dibujo esquemdtico de la dependencia de la longitud
de atenuacion de un electrén en un sélido en funcién de su
energia. La mayoria de los valores experimentales caen dentro
de la zona sombreada. (M = metal, I = aislante).

Los procesos de fotoemision y de emision Auger

En el proceso de fotoemisiéon un electrén de la muestra que ocupa
un estado cuya energia de ligadura es Ea absorbe un fotén de energia
hv y pasa a un estado electrénico desocupado de energia

K=hV—EA (1)

Si la energia K es suficientemente grande el electrén excitado puede
salir al vacio. El1 proceso de fotoemisién deja al sélido excitado con un
hueco en un nivel interno.

La relajacion del sistema se produce a través de dos fenémenos
diferentes que compiten entre si: la fluorescencia y la emision de electrones
Auger. Tanto en la fluorescencia como en la transicién Auger el hueco
en el nivel interno A es ocupado por un electrén que decae desde un nivel
superior B. La diferencia entre ambos procesos es que en el primer caso
la energia (Eb-Ea) disponible se emite como un fot6n, mientras que en
la transiciéon Auger se emite un electrén de un nivel C. Por lo tanto, la
energia K del electron Auger que sale del nivel C sera:

K = Es - Eg - Ec (2)
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Es importante notar que, a diferencia de la fotoemisién donde la
energia del electrén depende del fotén incidente, la energia de un electrén
Auger sélo depende de diferencias entre las energias de los tres niveles
involucrados. La transicién Auger es mas probable para elementos con
bajo nimero atémico Z mientras que para altos Z el proceso de
fluorescencia es el que predomina.

K
m— [ z/é'
— Ec — E EC

c
Es Es )

hv%% K M hV
S & E Ea

@) (b) (c)

Figura 3. Procesos de (a) fotoemision, (b) fluorescencia y (c) electrones Auger.

Espectroscopia de Fotoemision de Rayos X (XPS)

La técnica de XPS se basa en el analisis de los electrones
provenientes de niveles internos de los atomos superficiales de la muestra
y para ello es necesario utilizar fotones con energias en el rango de los
rayos X blandos. Como fuente de fotones se usa tipicamente la linea Ka
de Mg (1253.6 eV) o Al (1486.6 eV) y mas recientemente radiacién de
sincrotoén.

El resultado directo es el nimero de cuentas como funcién de la
energia cinética de los electrones N(K), la energia del haz de fotones
con que se irradia la muestra es hv y utilizando la ecuacién (1) se
puede obtener la energia de ligadura de los electrones E en vez de su
energia cinética K. En un espectro XPS se presentan picos
correspondientes a transiciones electronicas de fotoemisién y
también picos asociados a procesos Auger, se puede distinguir entre ellos
midiendo el espectro con distintas energias de fotén ya que si se
grafica las cuentas en funcién de la energia cinética, entonces los picos
Auger de ambos espectros coinciden pero no los picos de fotoelectrones.
Por el contrario, si se grafica las cuentas en funcién de la energia de
ligadura los picos de fotoemisiéon coinciden pero no los correspondientes
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a transiciones Auger. Este comportamiento se ilustra en la Figura 4 donde
se muestra espectros XPS del compuesto LaFeO3 producidos con los
dnodos de magnesio y aluminio.

I v 1

. V —— Mg Ka (1253 eV) -
“’w —— AlKa (1486 eV)
o‘wge%

" Fe(Auger)

 {

v il v 1 v 1 N |

-—b

Cuentas

N Fe(

BE=KE- (I1436eV) A
BE=KE- (1253¢eV)

1000 800 600 400 200 0

®) Energia de Ligadura (V)

Figura 4. Espectros XPS de una muestra de LaFeO, donde se presenta el niimero de
cuentas o intensidad en funcién de (a) la energia cinética y en funcién de (b) la
energia de ligadura BE. En (a) coinciden los picos Auger y en (b) los picos de
fotoelectrones.
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Espectroscopia de Electrones Auger (AES)

En esta técnica la muestra se irradia con electrones monocromaticos
y se cuentan los electrones Auger producidos o emitidos por la muestra.
El resultado directo también es el nimero de cuentas N(K) en funcién
de la energia cinética K de los electrones. Pero para determinar la posicién
los picos correspondientes a electrones Auger se presenta la derivada del
numero de cuentas, dN/dE. En los espectros Auger sélo se tienen picos
Auger y no de fotoelectrones [2].

Espectros Auger a modo de pulso en distintos puntos de la muestra inicial

Z
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Figura 5. Espectros AES en modo de pulso de una muestra
a analizar en condiciones inicilaes y como se ve estd
contaminada con Agy C.

Oxidos de los metales de transicién 3d

Los espectros de transiciones Auger para bajas energias de la
mayoria de los 6xidos de elementos de bajo nimero atémico muestran
lineas Auger en energias mas bajas que la linea Auger de los elementos
puros.

Los espectros de transiciones Auger para bajas energias de
compuestos de metales de transicién generalmente muestran dos
transiciones Auger de intensidades comparables (Figura 6), una de ellas
aparece a una energia mas alta que la linea Auger del metal puro.
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Figura 6. Energias Auger de éxidos de metal de transicién 3d. Circulos vacios:
elementos puros, circulos llenos: compuestos.

Este comportamiento puede ser explicado por un simple modelo de
transicion cruzada. Los niveles de valencia de los 4&tomos de metales de
transicién consisten de capas 3d parcialmente llenas y capas 4s
completamente llenas, las que en un sélido forman la banda de valencia.
Aplicando el modelo de banda iénica (Figura 7a) los niveles de oxigeno
2p se llenan con dos electrones 4s del metal.

Las dos lineas Auger observadas son 1) transiciones Auger de los
niveles 3d afectados por un corrimiento quimico y 2) transiciones
cruzadas desde los niveles 2p del oxigeno a huecos en las capas
internas del metal. Una comparaciéon con las bandas de valencia de los
6xidos muestra que el modelo puede ser aplicado: en el estado
oxidado la banda 4s-3d de un metal se separa en una banda vacia 4s y
una banda de valencia 3d parcialmente llena al nivel de Fermi (Figura 7b).
Adicionalmente se observa otra banda debido al nivel 2p del oxigeno.
Con éste esquema de energia las transiciones Auger pueden explicarse
de la misma manera que en el modelo i6énico. La separacién de energia
de los dos picos Auger, uno por corrimiento quimico y el otro por
transicién cruzada, corresponden a dos veces la banda prohibida. En el
caso de los 6xidos la linea de separacién observada decrece con el

incremento del nimero atomico de acuerdo con calculos de estructuras
de bandas.
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Figura 7. Esquema de los niveles de energia de las transiciones Auger de é6xidos de
metales 3d: (a) modelo iénico; (b) modelo de banda.

Sputtering y Profundidad (Depht Profiling)

En algunas técnicas en estudio de superficies se hace incidir sobre
la muestra iones de gases inertes (He*, Ne* o Ar*) en un rango de energia
desde unos pocos eV hasta algunos keV. Si el i6n incidente de energia
Eo y masa M; es dispersado por un atomo de masa M; de la superficie
bajo un dngulo q; (Figura 8) entonces el i6n dispersado tiene una energia
E, dada por

E, _

Ey (1+A)°
donde A = M2/M; y el signo positivo es para A>1, ambos signos para A<1.
Similarmente el 4tomo dispersor gana una energia E;. Asumiendo que
esta inicialmente en reposo y es arrancado a un angulo q2 relativo a la
trayectoria del i6n incidente, E; esta dado por:

E, 4A
E, 1+A)°

[cosO £ (A% —sen?6,)* ) (3)

cos 20, (4)
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Figura 8. Representacién esquemdtica de la dispersion de unién
por dtomos de la superficie.

La energia E; puede ser una fraccién importante de la energia del
i6n incidente, excediendo ampliamente la energia de ligadura local del
atomo dentro del sélido, y entonces el &tomo puede colisionar con muchos
otros produciendo una cascada de colisiones en las que una cantidad
importante de &tomos del sélido son puestos en movimiento. Dependiendo
de la energia cinética adquirida, algunos de estos 4tomos pueden ser
arrancados de la muestra produciendo la erosién de la superficie. Este
fenémeno es conocido como «sputtering» y se utiliza ampliamente para
limpiar la superficie de contaminantes. Tipicamente, un estudio de la
composicion quimica en funcién de la profundidad (depth profiling)
consiste en erosionar la superficie mediante el bombardeo con iones de
Ar* a una energia de 2 KeV e ir midiendo espectros XPS o AES.

Multicapas magnéticas de manganita/titanato de estroncio

En este trabajo se analizaron dos muestras de multicapas
constituidas por una pelicula de manganita otra de titanato de estroncio
y una mas de la misma manganita con diversos espesores sobre substratos
de MgO en un caso y SrTiO3 en otro. La manganita en cuestion es
Lag 55519 4sMnO3 la cual tiene una estructura tipo perovskita (Figura 9),
con distorsién romboédrica por el dopaje de Sr (x = 0.45 ) [3]. Los 4tomos
de Mn estan en el centro de un octaedro y los de oxigeno en los vértices
del mismo.
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a=b-=c¢=0.388nm

Figura 9. Estructura perosvkita cubica ideal ABQOj3,. A es un cation grande (La, Ca),
similar en tamano al O%; B es el cation pequerio Mn®** o Mn** en coordinacion
octaédrica con el oxigeno.

La presencia de atomos magnéticos (Mn) rodeados por atomos no
magnéticos (O) en las manganitas La; ,Sr,MnO3, da lugar a dos tipos
predominantes de intercambio que compiten entre si: el superintercambio,
que favorece un orden antiferromagnético (AF) entre iones Mn, y el doble
intercambio, que favorece un orden ferromagnético (FM). Los oxigenos
estan siempre en el estado O%, por lo que el estado de ionizacién de los
Mn se determina por la proporcion x de dopante. En el extremo x = 0,
se tienen todos MN®* y al aumentar x, aparece la misma concentracion

x de Mn'* [4].

Las manganitas presentan diagramas de fase complejos, ya que
sufren transiciones de fase magnéticas, estructurales y en sus propiedades
de transporte eléctrico. En la figura 10 se muestra el diagrama de fases
para monocristales de La;.4SryMnO3 al variar la temperatura y la
concentracion de dopante x.

Para x cercana a cero, el sistema es siempre aislante y presenta un
orden antiferromagnético canteado a temperaturas bajas. Para x un poco
mayor se observa un orden ferromagnético a bajas temperaturas, y el
sistema sigue siendo aislante en todo el rango de temperaturas. Para 0.15<
x <0.5, se observa una transicién metal-aislante en todo el rango de
temperaturas y para temperaturas altas ademas hay una transicion
paramagneto-ferromagneto [5].

En nuestro caso con x = 0.45 tenemos la manganita en fase
ferromagnética-metalica.
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Figura 10. Diagrama de fases para monocristales de La;..Sr:Mn0O3;. O’y O
representan una estructura ortorrémbica, y R una romboédrica. Se observan
distinta fases magnéticas: A (antiferromagnética), C (canteada), F
(ferromagnética) y P (paramagnética). Hay regiones donde el material es
metdlico (M) y otras donde es aislante (I).

Crecimiento de las tricapas

Para éste trabajo las peliculas delgadas fueron crecidas por
sputtering DC a partir de un blanco ceramico de Lags55r94sMnO3 para
la capa de la manganita y otro blanco de SrTiO; para la capa central.
Dentro de la cdmara de vacio estaban los dos blancos. Primero se trabaja
el substrato con el blanco de manganita por un tiempo determinado
considerando que la tasa de deposicién es 1.5 =/min, luego se traslada
el substrato con su primera pelicula ante el blanco del titanato para
depositar la capa central y luego otra vez ante el ceramico de manganita
para depositar la dltima capa. Durante la deposicién el substrato se
mantiene a una temperatura de 700°C.

Los substratos utilizados son monocristales de SrTiOs3 (100) que tiene
también una estructutra tipo perosvkita con parametro de red 3.905 =,
0.9% diferente al de la manganita (3.869 =) y MgO (100) el cual tiene una
estructura tipo NaCl con un parametro de red de 4.216 =. Sobre el
substrato de SrTiOj3 el crecimiento de la manganita seria celda sobre celda
por los parametros de red similares, distorsionando levemente el tamario
de la celda para subsanar la diferencia entre los parametros de red (lattice
mismatch) estirandose el film de manganita en el plano del substrato y
contrayéndose en la direccién perpendicular. Sobre el substrato de MgO
la interfase serd mucho mas desordenada ya que los pardmetros de red
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difieren en casi un 10% y el sistema debera introducir un gran numero
de dislocaciones para relajar las tensiones.

Los espesores nominales de las peliculas estan dados en la siguiente
tabla:

Tabla 1. Caracteristicas de las muestras.

Muestra | substrato Primera Segunda Tercera

capa / espesor (=) capa / espesor (=) capa / espesor (=)
Muestra 1 MgO La,.Sr,,.MnO, /400 | SrTiO, / 20 | La,..Sr,,,MnO, /500
Muestra2 | SrTiO, | La,..Sr,,.MnO, /400| SrTiO, / 50 La,..Sr,,-MnO, / 500

La muestra 1 ademas fue terminada con litografia dptica y grabado
iénico para producir los contactos eléctricos de un diseno donde se
pretendia medir la conduccién en la juntura a través de la capa central
de SrTiO3 que es aislante y de las capas conductoras de manganita.
Entonces la tricapa no cubre todo la superficie de la muestra, sino sélo
dos pequenas regiones de forma casi triangular (Figura. 11).

Figura 11. Esquema de la superficie de la muestra 1. Las dos regiones triangulares
sombreadas son las tricapas (tabla 1). El substrato es MgO.

Resultados y Discusion

Las técnicas empleadas para analizar quimicamente la superficie de
la muestra fueron: Espectroscopia de Fotoemision de rayos X (XPS) que
analiza toda la superficie de la muestra (unos 20 mm?) y Espectroscopia
de Electrones Auger (AES) que analiza sélo unos 0.5mm? de la superficie
de la muestra.
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En los primeros espectros Auger en modo pulso para no cargar
eléctricamente la muestra, se aprecian picos de C y Ag poco claros (Figura
5) lo que indica que sobre la superficie se habia depositado Ag y estaba
contaminada con C. Entonces se habia depositado Ag sobre la muestra
para una caracterizacién (microscopia) anterior al estudio con
espectroscopia de electrones.

Luego se «<bombarded» la muestra con argén en varias etapas, controlando
parametros como corriente (con una copa de Faraday), presién y tiempo
para conocer la tasa de «grabado iénico». La corriente inicial para el
bombardeo de Ar* fue de 3.0x108 A, correspondiente a 3.8 mA/cm?, a una
presion de 1.0x10°8 torr, y un potencial de 2.6 kV. Luego de 135 segundos
en el espectro Auger se observan sélo picos de Ag. Seguimos bombardeando
la muestra con las mismas condiciones en intervalos de tiempo de 5 6 10
minutos, observando en los espectros que el pico correspondiente a Ag
va decreciendo para desaparecer totalmente después de unos 60 minutos,
a la vez que aparecen los picos de Mn, La y O en espectros AES, los que
se hicieron en distintos puntos de la muestra (Figura 12), observandose
que hay presencia de LaSrMnOj; fuera de las regiones triangulares. Esto
indica que el litografiado éptico resulté defectuoso ya que sélo deberia
haber manganita en la regiones triangulares.

AES en distintos puntos de la muestra

luego de 50 minutos de sputtering con Ar’
] v 1 v 1 v ) v ) M I b 1 & ]
La (MNN)

dN/dE
|

Ar (LMM)

Ag (MVV)

O (KVV) Mn (LMM)

0 100 200 300 400 500 600 700 800
E cinética (eV)
Figura 12. Espectros AES de la muestra 1 luego de ser «bombardeada» por 50

minutos. Se observa que hay manganita en toda la superficie, es decir, también fuera
de las regiones triangulares.
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También se obtuvieron luego de 50 minutos de bombardeo i6nico
espectros XPS (Figura 13). En ellos se observa ademads el pico de
fotoemisiéon 3d del Sr. En el espectro AES no se aprecia la linea Auger
asociada al Sr por el rango de energia de la medicién.

Ll M 1 v 1 T

O (KVV

Después de 50 min
Ag 235%
La , Sr,  MnO, 76 5%

La (MNN)
La 3d

Cuentas

Mg (KLL)
La 4p

Sr 3d

La 4d

i Después de 5 min

" | " 1 A 1 " 1

1000 900 800 700 600 500 400 300 200 100 0

Energia de ligadura (eV)

Figura 13. Espectros XPS, con anodo de AlKad (1486.6 eV), de la muestra 1 a los 5y 50
minutos luego de ser bombardeada con Ar*.

Se siguié bombardeando y tomando espectros periédicamente.
Luego de mas de 3 horas de dicho proceso ya no se observa manganita
en los espectros AES fuera de las regiones triangulares y se aprecia el pico
Auger del oxigeno indicando que el sustrato no seria SrTiOj3 sino
posiblemente MgO por lo cual se tomé un espectro XPS con un rango
de energia mayor (energia de ligadura desde 1400 a 0 eV) y con el anodo
de Al para usar la linea Al Ka como fuente de fotones y asi poder observar
si hay pico de Mg. Efectivamente obtuvimos el resultado esperado, se
encontré el pico de Mg. (Figura 14)

Con espectroscopia Auger se analizaron diferentes zonas de la
muestra encontrandose que el substrato era MgO y verificando que las
tricapas eran sélo dos regiones casi triangulares de toda la superficie de
la muestra, es decir, los espectros Auger en zonas de las regiones
triangulares acusan presencia de LaMnO y fuera de ellas de MgO. Se
midieron entonces las intensidades de los picos de los elementos presentes

95



REVISTA DE LA FACULTAD DE CIENCIAS - UNI

Tyt 1yt rrrrrrr-r T T v 1 T
) Mg 46.3 % -
L Fuera del “tnangu - O 480%
-
u" - —
O
=
p4 - -
O
Dentro del “tnangujo* J O (KVWV)
- - Mn O
[ P PO TP PO PR PO PO PO
— 1 1

0 100200 300 400 500 600 700 800 1400' 12'oo 1000 800 ' 6(')0 '
E cinética (eV) E de ligadura (eV)

Figura 14. Espectros AES a la izquierda y XPS en la derecha de la muestra 1 luego
de 194 minutos de bombardeo. Se observa que fuera de la regién triangular ya no hay
manganita y de XPS con un rango ampliado de energia se tiene un pico de Mg
correspondiente al substrato MgO.

en los espectros AES tomados en posiciones conocidas a lo largo de una
linea recta, direccién z, en la superficie de la muestra (Figura 15). Se
encuentra un buen acuerdo con la forma de la muestra, es decir, dentro
de la region triangular aparecen los picos de La y Mn y fuera de ella no
se presentan.

o —
+0 (511eV) ]
—e— Mn (589eV) -
4 - La(78eV) ]

} ]
/
/-
N
/

—T—T
1

Intensidad de los picos Auger (u.a.)

Zona del"triangulo” o

[ de la manganita () A ]

i A\ A ]

P ]

g /0 2

- @ A ’
[ 1 " 1 i 1 " 1 " 1 . 1 " 1 " 1 " | I Y

00 02 04 06 08 10 12 14 16 18 20 22
Z(mm)

Figura 15. Intensidad relativa de los picos Auger de algunos elementos en funcién
de la direccion Z sobre la superficie de la muestra 1.
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Cambiando el potencial de bombardeo de 2.6 a 3 kV, se dieron
tiempos de bombardeo mayores y se tomaron espectros AES de una
regién triangular, observandole siempre la manganita. Después de un total
de 760 minutos de bombardeo iénico se observé en los espectros AES
que los picos de La y Mn no estaban presentes sino sélo el oxigeno,
entonces se tomé un espectro XPS (Figura 16) y resulté que sélo se tiene
MgO, es decir habiamos llegado al substrato sin encontrar la capa de
SrTiOs.

13
9

Mg 1s

Cuentas

= O (Auger)

<
Q
R
=
&
1

1400 1200 1000 800 600 400 200 0
E de ligadura (eV)

Figura 16. XPS de la muestra 1 al final de 671 minutos de bombardeo. Se llego al
substrato MgO sin lograr ver la capa de SrTiO,.

Conociendo el espesor nominal de la tricapa, 920 =, y del tiempo
que se tardé en eliminar la capa de Ag que tenia encima, 60 min, se estimo
una tasa media de grabado iénico de 1.5 =/min.

El espectro XPS realizado a una muestra de SrTiOj3 se presenta en
la Figura 17 y es lo que esperariamos tener de la capa central.

Para la muestra 2, se tomaron también espectros iniciales de XPS
y AES en los cuales se encontré un pico de C. Luego de 5 minutos de
bombardeo a una corriente de 3.0x10® A, correspondiente a 3.8 mA/cm?®
y una presién para el Ar* de 1.0x10°6 torr, y un potencial de 2.6 kV se habia
logrado eliminar el pico de C (Figura 18), quedando sélo los
correspondientes a la manganita.
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R TI(LMM) J
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> Porcentaje en volumgn
& ? 0 622% .
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Figura 17.- XPS de una muestra patrén de SrTiO, irradiada con dnodo de MgKa.
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Figura 18. AES de la muestra 2 al inicio y luego de 5 minutos de bombardeo. Se
observa que la muestra estaba contaminada con C y luego sélo se tiene la manganita.

Se bajé entonces el potencial a 2.1 kV y se dieron tiempos de
bombardeo inicialmente de 60 minutos hasta 4 horas y luego cada 10
minutos. Después de un total de 615 minutos y dado que los espectros
XPS no cambiaban, se aumenté el potencial para el bombardeo a 3 kV.
Luego de 130 minutos en estas condiciones se empezd a observar un

98



REVISTA DE LA FACULTAD DE CIENCIAS - UNI

pequeno pico de Ti. Se bombarde6 entonces cada 5 minutos y se realizé
espectros AES a la muestra 2. El pico de Ti apenas aumenté y los picos
de la manganita casi no variaron para finalmente quedar los de la
manganita y desaparecer los de Ti (Figura 19). No se logré tener un
espectro sélo de SrTiO3 como en la figura 16, sino que siempre se observan
los picos de manganita.

En la Figura 19 se muestra las intensidades relativas de los picos
tomados de los espectros AES para la zona que corresponderia a la capa
central. Aqui se puede apreciar un leve crecimiento del pico de Ti que
luego vuelve a desparecer. Los picos de Mn y La apenas variaron. Los
tiempos estan dados a partir del momento en que se aprecié el primer
pico de Ti.

T T T v T v T A T v T M T T v T

—a— T
— — Mn
—w—La

Vhebenhboidy

Intensidad relativa de picos

— 1 e

1 1 1 1 A 1
0 20 40 60 80 100 120 140 160
Tiempo (min)

Figura 19. Intensidad relativa de los picos tomados para dos elementos de la
manganita(Mn y La) y del Ti en funcién de los tiempos de bombardeo a partir del
momento en que empieza a apreciarse el pico de Ti.

Conclusiones

e De la muestra 1 y la gréfica de la figura 15 se obtuvo el ancho
del haz de electrones, con que se irradia la muestra para obtener
espectros AES en el equipo utilizado, resultando éste de 0.5 mm.
También se encontré que el litografiado dptico para esta muestra
habia sido defectuoso porque encontramos manganita fuera de
las regiones triangulares.
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e No se pudo observar los picos correspondientes a la capa central
(SrTiO3) de las tricapas. Como en las tres capas hay Sry O
entonces interesaba observar los picos de Ti, los que no pudieron
apreciarse debido al espesor de la capa central (20 = en la primera
muestra y 50 = en la segunda muestra). Esto se corrobora
también simulando el bombardeo i6nico con los parametros
usados en el andlisis de las tricapas. El resultado de dicha
simulacién se presenta en la Figura 20. Como se ve, la muestra
es danada significativamente para espesores menores a 100 =.

o Para poder analizar la composicién quimica dentro de la capa
central para espesores menores a 100 = se sugiere hacer sélo
una bicapa y analizarla con XPS/Auger (sin grabado iénico)
inmediatamente después de haberla fabricado.

% de Vacancias debido al Sputtering
con Ar+ acelerado con 3 kV sobre STO
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Figura 20. Simulacién en el trem del porcentaje de vacancias en el SrTiO, por
bombardeo de Ar* acelerados con 3kV .
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