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Presentacion

El presente niuimero es signo del esfuerzo por crear la tradicion
de publicar los resultados de las investigaciones y, en general, los
estudios de los cientificos de la Facultad de Ciencias de la UNL

REVCIUNI constituye un estimulo para producir y publicar
resultados de nivel cientifico generosamente amplio.

Aqui queremos invitar a los miembros de la Facultad de Ciencias,

y de la comunidad UNI, a presentar sus trabajos cientificos, para
ofrecerlos al conocimiento y critica del pais.

El editor
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Caracterizacion de celulas
fotovoltaicas por medidas de
fotocorriente espectral

Carmen Eyzaguirre, Anibal Valera, Dominik Essing (*)

RESUMEN

En este trabajo se presentan los primeros resultados de la colaboracion
UNI"HAHN-MEITNER-INSTITUT, obtenidos en el diagnostico de celdas
solares de alta eficiencia (Programa Euro-Joule), empleando un espectrometro
de fotocorriente, desarrollado en la UNI.

En primer lugar se muestra una aplicacion del sistema a una celda solar de
silicio monocristalino de la empresa ISOFOTON (Espana), para luego resumir
las evaluaciones efectuadas en dos tipos de celdas «Joule»: CdS/

Cu(in,Ga,)(S,Se)> v ZnSe/Cu(In,Ga,)(S.5¢)>.

ABSTRACT

In this work, we present the first results of the colaboration UNI/HAHN-
MEITNER-INSTITUT, obtained in the characterization of high cfficiency solar
cells (Programme Euro-Joule) with a home made photocurrent spectrometer.

(*) Laboratorio de Optica, Facultad de Ciencias UNI, Lima
e mail: ceyzaguirre@uni.edu.pe
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First, we show the application of the system to a monocrystalline silicon solar
cell (Co. ISOFOTON /Spain). We describe next the resuits obtained with two
types of «Joule» solar cells: CdS/Cu(In,Ga,)(S,Se); and ZnSe/

Cu(In,Ga,)(S,Se)s.

Introduccion

Las células solares constituyen hoy en dia, en paises como el Pert, la mejor
alternativa de solucion a muchos casos de requerimiento de energia eléctrica, como
ha sido comprobado en innumerables casos de electrificacion rural. No obstante, para
que esta tecnologia sea también rentable a mayor escala se hace necesario introducir
nuevas tecnologias, no tan complejas y menos costosas, que las actualmente en uso

[].

En muchos laboratorios del mundo se trabaja en nuevas técnicas y disefios
que simplifiquen la elaboracién de celdas solares y por tanto puedan contribuir en
un futuro cercano a que su costo se reduzca. Los logros mas significativos se han
dado en la tecnologia de celdas solares de pelicula delgada, teniendo como ejemplo
las celdas solares de silicio amorfo con eficiencias comerciales del orden del 4 al
10%, producidas por la empresa UNI Solar (USA) [2] y las celdas solares
policristalinas en base a CulnSe; desarrolladas en la Universidad de Stuttgart / Institut
fiir Physikalische Elektronik, con eficiencias (en laboratorio) del orden del 14% [3]

En el Laboratorio de Optica de la UNI se han elaborado y caracterizado
diversos tipos de celdas solares, destacando en esta tarea las celdas solares de pelicula
delgada en base a CdS y como técnica de caracterizacion principal la espectroscopia
de fotocorriente [4].

La formulacion de este trabajo tuvo como base, de un lado, la experiencia
propia ganada en la linea fundamental fotovoltaica y del otro lado, la conveniencia
de elegir un tema de tesis apropiado para el nivel de Maestria* (Universidad de
Andalucia), estableciéndose asi los contactos necesarios y un programa de trabajo
(mediciones, evaluaciones, etc.) a realizarse en la UNI. Los contactos establecidos
fueron con EMILIANO PEREZAGUA GIL (ISOFOTON) y ULF BLIESKE (HAHN-
MEITNER INSTITUT [HMI]/ Bereich Festkdrperphysik.

En lo que sigue pasamos a describir el equipo empleado en la UNI para el
analisis espectral de celdas solares, los primeros resultados obtenidos y una discusion
de estos.
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Parte experimental

Muestras

Las muestras empleadas en este trabajo fueron de dos tipos:

A. Celdas solares monocristalinas
(ISOFOTON), elaboradas en Sevilla (Espana) por la técnica convencional
de difusion térmica.

B. Celdas solares de pelicula delgada (HMI)

B1: CdS/Cu(In,Ga,)(S,Se);
B2: ZnSe/Cu(In,Ga,)(S,Se);.,
elaboradas por Siemens (Alemania) por técnicas de deposicion al vacio.

Equipo de espectroscopia de fotocorriente

En la figura 1 se muestra de manera esquematica el equipo de fotocorriente
espectral empleado en este trabajo:

Celda Solar
Lg z ;_'

cr%]:l(;. P‘;"

Luz
|
O]
Ch

7~ iRef, sl
PC Amplificador Lock In

Figura 1: Diagrama esquematico del equipo de espectroscopia de Fotocorriente (UNI)
empleado en el diagnostico celdas solares.

El equipo ha sido ya descrito en otros trabajos [4] y esta compucsto
basicamente de los siguientes elementos: Una fuente de luz blanca (Lampara
Haldgena 300 W), que es concentrada a la entrada de un monocromador (Carl Zeiss
/ M4 Q 11 S), debiendo pasar previamente por un modulador mecanico (Chopper).
En estas condiciones se va a disponer de radiacion monocromatica cn el rango




REVISTA DE CIENCIAS - UNI

efectivo de 0,4 um hasta 2,5 pm. Esta radiacion es enfocada en la celda solar en
evaluacion, detectandose la fotocorriente producida, la que es amplificada por la
técnica Lock-In y derivada a una PC para su registro y procesamiento.

Resultados

Las Mediciones efectuadas se resumen a la determinacidon experimental del
espectro de eficiencia cuantica (Numero de fotoportadores que contribuyen a la
corriente en relacion al numero de fotones incidentes) de las celdas solares, segun
el procedimiento ordinario (Ref. 4, por ejemplo).

A. Celda ISOFOTON

En la figura 2 se presenta el espectro de eficiencia cuantica obtenida para una
celda de silicio monocristalino (CI10/ISOFOTON)).

CELDA SOLAR C10 / ISOFOTON / EFICIENCIA CUANTICA / R= 0, 1
0,07

0,06
0,05
0,04
0,03
0,02
0,01

0

Eficiencia Cuantica (u.r.)

0 1 2 3 4
Energia (eV)

Figura 2: Respuesta espectral de la eficiencia cuantica de una celda solar monocristalina
(CI10 / ISOFOTON), evaluada en la UNI.

Siguiendo el método ordinario de evaluacion de este tipo de espectros [4] se
lincaliza la respuesta de eficiencia cuantica a partir de la relacion:

n = no (hv - hvp)a
donde:
hv es la energia fotonica

hvg es ¢l umbral de energia correspondiente (el «gap» , por ejemplo)
oL un exponente caracteristico.
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Para la celda C110 se encuentra a partir del espectro de la fig. 2. que esta

empieza a responder a partir de la energia 1.038 ¢V, motivo por el cual se¢ linealiza
el resultado considerando:

hvy = 1.038 eV

LN EF VERSUS LN (HV - 1038) / CL 10

Figura 3: Gréfico de la linealizacion de la respuesta espectral (Fig. 2) de la celda solar
CI10 en el rango inicial.

CELDA JOULE # 37 / CdS/CBD EFICIENCIA CUANTICA/ R=0,]
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Figura 4: Respuesta espectral (R= 0.1) de la eficiencia cuantica de una celda solar «Joule»
(SIEMENS / S# 37 / CdS/CBD), evaluada en la UNIL.
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En la figura 3 se muestra el resultado de la linealizacion, obteniéndose asi:
' o =1
Mo = 148.29

B. Celdas Joule

En la figura 4 se presenta la respuesta espectral de la eficiencia cudantica de
una celda Joule (S# 37 / CdS/CBD) evaluada en este trabajo. De modo analogo al
caso monocristalino descrito, la evaluacion de este espectro se efectua segin la
fotorespuesta ocurrente y su correspondiente linealizacién, encontrandose asi, para
el rango espectral de 0.7 eV hasta cerca de 1.2 eV, la eficiencia global 1 :

CELDA JOULE S#37 CdS /CBD EFICIENCIA CUANTICA/ R = 0.05

ef. cuantica (u.r.)
wW

Energia (eV)

Figura 5: Respuesta espectral (R=0.05) de la eficiencia cudntica de una celda solar «Joule»
(SIEMENS / S# 37 / CdS/CBD), evaluada en la UNI.

n = 0.037 + A (hv - 0.747)"5
+ B (hv - 0.829)?
+ C (hv - 0.9425)25
- D (hv - 1.012)2

Estos resultados deberan de ser confirmados y afinados con mediciones de
mayor resolucion, que se encuentran en curso. Asi por ejemplo en la figura 5 se
presenta un espectro de eficiencia cuantica obtenida para la muestra S#37 con rendija
R = 0.05 y en la figura 6 finalmente presentamos el espectro de eficiencia cudntica
(R = 0.05) obtenida para la muestra S#31 (ZnSe/CBD)
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CELDA JOULE #S 31/ ZnSe/CBD
EFICIENCIA CUANTICA / R=0,05

Eficiencia Cuantica (u.r.)

0 1 2 3 4
Energia (eV)

Figura 6: Respuesta espectral (R=0.05) de la eficiencia cuantica de una celda solar «Joule»
(SIEMENS / S # 31 / ZnSe/CBD), evaluada en la UNI.

Discusion

Los resultados obtenidos en la muestra de silicio monocristalino (ISOFOTON)
muestran el tipico comportamiento de las homouniones pn, sirviendo en este caso
de nivel de referencia de la validez de las mediciones realizadas con el equipo.

Las celdas «Joule» por tratarse de uniones de pelicula delgada (multicapa).
la correlacion no es tan directa como en el caso monocristalino, restando aun
establecer las condiciones de elaboracion de las muestras para poder interpretar
apropiadamente los resultados obtenidos.

El hecho que la ventana de captacion espectral de las celdas Joule en base
a ZnSe sea mayor que en ¢l caso de CdS, se explica por ser ¢l «gap» de ZnSe (2.7
eV) mayor que el de CdS (2.3 eV).

(*) Reconocimiento

Este trabajo se originé en el marco de una Tesis de Maestria (Carmen
Evzaguirre Gorvenia) en la linea de Energias Renovables, otorgada por la
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Universidad de Andalucia, en cuya sede se cumplio con aprobar todos los cursos
prerequisitos, con el compromiso de realizar la Tesis en el pais de origen.

Los costos efectuados durante el viaje de estudios fueron asumidos por el
Instituto General de Investigacion dela UNI (IGI), la Facultad de Ciencias de la
UNI y la Universidad de Andalucia, por lo cual manifestamos nuestro agradecimiento

Las celdas solares de ISOFOTON fueron gestionadas gracias a la mediacion
del Dr. Valeriano Ruiz Hernandez, cogestor de este trabajo, a quien estamos muy
reconocidos por todo el apovo recibido.

Las celdas solares del Proyecto Joule fueron cedidas gentilmente por el
responsable aleman del mismo Dr. Ulf Blieske, por lo cual quedamos también muy
agradecidos.
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Optica imtegrada: Elabora-
cion y caracterizacion de
oulas de onda planas

Luis Mosquera, Roddy Ramos, Enver Fernandez, Jorge Leon,
Herndn Soldevilla, Guido Castillo, Anibal Valera®, Mauro Lomer (%)

RESUMEN

En esta publicacion presentamos los primeros resultados obtenidos en la UNI
en la técnica de elaboracion v caracterizacion de guias opticas. Este trabajo
se inicio en el marco de un curso teorico experimental dictado por el
Prof. Mauro Lomer en Agosto 98.

Se presenta la teoria basica, los métodos de elaboracion empleados. el

proceso de caracterizacion empleado y los resultados.

ABSTRACT

In this paper, we show the first results obtained in the UNI about the
technology of elaboration and characterization of optical wave guides. This
work was initiated in August 98, in relation to a Workshop organized in our

Lab by Prof. Mauro Lomer.
We present here the basic theory, the applied elaboration methods, the

characterization process and results.

(*) Facultad de Ciencias / Laboratorio de Optica, UNI, Lima

»

e mail: avalera@uni.edu.pe
Grupo de Ingenieria Fotonica /Universidad de Cantabria / Santander/ Espana

e mail: lomer@teisa.unican.es
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Introduccion

La Optica Integrada se inicio como linea de investigacion aplicada a fines
de los arios 60. Desde un inicio, la intencion fue desarrollar dispositivos opticos de
modo analogo a los circuitos integrados de la electronica convencional, No obstante,
en la actualidad los avances de la Optica integral constituyen la base de una nueva
generacion de componentes y dispositivos opticos y optoelectronicos que reemplazara
a corto y mediano plazo la tecnologia electronica, por sus diversas ventajas, ante
todo la velocidad de respuesta.

De modo andlogo al caso de las fibras opticas, la Optica integrada se
fundamenta en el hecho que las ondas de luz pueden ser confinadas y guiadas por
capas delgadas de material transparente. Combinando tales peliculas con estructuras
apropiadas, la tecnologia de dptica integrada ha logrado realizar una gran variedad
de dispositivos, cuyas funciones abarcan una gran variedad de operaciones pasivas
y activas. Asi por ejemplo, la luz puede ser guiada, modulada, derivada, filtrada,
concentrada, e incluso posibilitar la generacion de radiacion Laser.

Estas componentes son pequenas y compactas, 1o cual en analogia a los
circuitos integrados de la electronica, permiten reducir notablemente la configuracion
de los equipos y componentes Opticos convencionales, posibilitando asi, incorporar
en un solo elemento multiples funciones, que usualmente requeririan de todo un
Laboratorio para realizar tales montajes. Las primeras aplicaciones son desde ya muy
significativas : comunicaciones oOpticas, sensores opticos, tratamiento de senales, etc.

En lo que sigue, nos limitamos a describir en la parte teorica, los lineamientos
basicos de las guias oOpticas dialécticas, en la parte experimental los métodos de
fabricacion usados en la UNI, asi como el método de caracterizacion empleado.
Finalmente presentamos los primeros resultados obtenidos.

Fundamento tedrico

Las estructuras usadas ordinariamente como guias de ondas son capas
dielécticas de geometria plana (peliculas, tiras) . En la figura 1 se muestra de manera
esquematica, la configuracion mas simple de una guia dptica, es decir a salto de
indice, en donde una pelicula plano paralela de indice de refraccion n¢ es colocada
a modo de sandwich entre un soporte y una cubierta de indices de refraccion menores
ns y ne. Frecuentemente el material de cubierta es aire y el material de soporte vidrio,
por tanto nc = 1 y ng = 1.51.

12
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Cubierta Ne

N\

Figura 1: Vista esquemadtica de una guia de onda plano paralela , consistente de una pelicula
fina de espesor h e indice de refraccion ns, acotada entre un material de soporte (ns) y

una cubterta (n.).[2]

En la figura 1 se muestra que para aquellos rayos que cumplen la condicion
de confinamiento, la luz se va a propagar en la direccién z, con una constante de
propagacion efectiva 3 [1].

El efecto de confinamiento se debe a la reflexion total que ocurre para

incidencias internas con angulos 0 (ver Fig. 1) mayores que el angulo critico (0.).
dado por la relacion [1]:

sen 0. = ng / ng
f=kngsen O

No obstante, no todos los dngulos 6 estdn permitidos; sino un namero discreto
(Modos), que cumplen la condicion de resonancia transversal [1]:

2knrhcos 0-2 bs-2 ¢c=2 vr

donde v es un entero (0, 1, 2...) que identifica al numero del Modo , ¢,y ¢ son
los desfasajes que se producen en las respectivas interfaces :

s = tan! (n? sen? O - ng?)! 2 /(nf cos 0)

b = tan”' (nf sen® O - nc®)"? /(ng cos 0)

La ecuacion de resonancia constituye también la ecuacion de dispersion de
la guia optica, relacionando la constante de propagacion 3 como una funcion de la
frecuencia © vy el espesor de la pelicula h. Debido a que los posibles valores de B
ocurren para:

kng<PB<kne.

13
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se suele definir un indice efectivo(N,) por Modo i, dado por la expresion:
N,: Bi/k=nfsen Gi

en donde: ng < N < np

La ecuacion de dispersion constituye una relacion trascendente, que debe ser
resuelta numéricamente por aproximaciones sucesivas, en el caso de las guias a
gradiente de indice.

Parte Experimental

A. Elaboracion de las Guias opticas

Los meétodos usados para realizar guias de onda opticas en vidrio se pueden
dividir en dos clases: aquellas en que las capas son realizadas por la formacién de
un material sobre un sustrato (evaporacion al vacio, por ejemplo) y aquellos en lo
cuales sc forman en el mismo sustrato por algin proceso quimico o reaccion fisica
(intercambio i6nico, difusion).

A continuacion nos limitamos a describir en este articulo dos de las técnicas
empleadas en nuestro Laboratorio para la elaboracion de guias opticas: El método
de intercambio i6nico y el método de difusion.

El Método de intercambio idnico, es la técnica menos compleja, desde el
punto de vista de equipamiento y consiste en modificar el indice de refraccion del

Horno

Portamuesti

Muestra

Figura 2: Diagrama esquematico del montaje experimental usado para elaborar guias dpticas.

14



OPTICA INTEGRADA: ELABORACION Y CARACTERIZACION
DE GUIAS DE ONDAS PLANAS

sustrato (vidrio, por ejemplo ) a partir de la superficie. Para lo cual se sumerge una
lamina de vidrio en un bafio de una sal que contenga iones metalicos movibles (K™.
Cu*, Ag*, ...por ejemplo), como se muestra en la figura 2. Las variaciones de indice
de refraccion y/o profundidad de penetracion dependen fuertemente de los parametros
del proceso, que son basicamente la temperatura y el tiempo del bano).

En nuestro caso se uso Nitrato de plata (AgNOs3), que en una cantidad de 125
gr. se fundid en un recipiente de acero inoxidable. Como substratos se usaron laminas
de vidrio (portamuestras de microscopio). Manteniendo la temperatura del bano
constante (392°C), se elaboraron 4 muestras a difcrentes tiempos de exposicion: 10'.
15', 20"y 25", resultando todas guias Multimodo, mostrandose un minimo de 8 Modos
para la muestra de 10".

El método de difusion, es una de las técnicas mas difundidas a nivel gencral.
sobre todo en aplicaciones en la microelectronica, su empleo en la elaboracion de
guias opticas conlleva muchas ventajas practicas, como por ejemplo la realizacion
de disefios especiales.

En nuestra experiencia la difusion se realizo en fase solida, a partir de un
deposito previo de una capa metalica sobre el substrato (vidrio), como se mucstra
esquematicamente en la figura 3.

2 P T TS S
|

)
LA RO A S
o kRN T R

Figura 3: Diagrama esquematico del monlaje expernimental usado para elaborar guias opticas
por el método de difusion térmica

por €l método de intercambio i0nico

Las capas metdlicas dcpositadas por evaporacion al vacio fucron
respectivamente peliculas de cobre y plata, con espesores del orden de 0,1 micras.
Lucgo del proceso de difusion el resto de la capa metalica se remucve con un solvente

15
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apropiado. Se construyeron 5 guias opticas en base a difusion de cobre y 8 en base
a la difusion de plata, segun los tiempos y temperatura descritos en la tabla 1: Todas
ellas multimodo con un minimo de 5.

Tabla 1 : Guias Opticas elaboradas por el método de difusion, indicandose el tiempo que la
muestra fue sujeta al tratamiento térmico y la temperatura correspondiente.

Muestra Tiempo / min. Temperatura / °C Diseno
Cu 01 30 420 Planar
Cu 02 15 420 Planar
Cu 03 2 420 Planar
Cu 04 10 286 Circular
Cu 05 25 290 Cuna
Ag 01 30 420 Planar
Ag 02 10 365 Planar
Ag 03 10 305 Planar
Ag 04 ‘ 10 292 Cuna
Ag 05 10 292 Circular
Ag 06 10 260 Planar
Ag 07 10 231 Planar
Ag 08 10 256 Planar

B. Evaluacion de guias opticas

El principal método de evaluacion de guias opticas consiste en excitar los
distintos Modos propios desde un extremo de esta (Zona de ingreso) y detectar su
salida del otro extremo (Zona de salida), para lo cual se acopla la radiacion incidente
(Laser) mediante un prisma de indice de refraccion alto. En la figura 4 se presenta
de manera esquematica el efecto de acople. Sc¢ hace incidir un haz de luz
monocromatica (Ldser He-Ne: 633 nm, por ejemplo) sobre la superficie del prisma
con un angulo de incidencia (i), al penetrar en el prisma este es refractado y alcanza
la guia en el punto P, penetrando en ella con un dngulo de refraccion g.

Para asegurar un buen acoplamiento entre el prisma y la guia, es necesario
que el espesor de la cufia de aire entre ellos sea inferior a A/2 (316 nm), lo que en
la practica se logra ejerciendo una presion controlada sobre el substrato. En nuestro
caso se logra realizar el acople mediante un aceite de inmersion (Di bromo naftalina,
n = 1.650).

16
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Haz risma

Figura 4: Acoplamiento de un haz incidente (Laser) en una guia optica (n) mediante
un prisma de indice de refraccion alto (n ) i angulo de ingreso al prisma, g. angulo de un

Modo de la guia. [2]

Para efectos experimentales se dispone el conjunto (Guia, prisma) sobre una
mesa goniométrica rotatoria, de modo tal que sea posible vanar el angulo de
incidencia en un gran rango angular, como se muestra en la figura 5. Sobre una
pantalla se observa la luz proveniente del prisma.

Ylineas "m"

Pantl la

Mesa
goniométrica

Figura 5: Diagrama esquemadtico del arreglo experimental empleado en la observacion de los
modos de las guias opticas

En la experiencia, cuando la luz guiada sale por la extremidad de la guia, se
mide el angulo de ingreso i, lo que permite deducir el indice efectivo de cada Modo
(figura 6). En el equipo descrito, la rotacion de la mesa goniomeétrica se efectua

17
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manualmente y la determinacion de los Modos propios se efectua visualmente. Esta
procedimiento resulta apropiado, si la guia dispone solo de algunos Modos , no
obstante si se trata de una guia de muchos Modos, la metodologia manual no es
suficiente. Por tal motivo una proxima tarea del grupo es la de automatizar del sistema
con el objeto de dar precision a las medidas.

e

Figura 6: Detalle del procedimiento expenmental de generacion de Modos propios
de una guia dptica /Lab UNI/.

C. Resultados experimentales

A continuacién nos limitamos a presentar los resultados experimentales (Tabla
2) obtenidos manualmente con el montaje de la figura 5 en base a la muestra Ag08,
obtenida por difusion térmica. Esta muestra es la tnica que muestra pocos Modos
propios, lo que facilita su evaluacion.

Tabla 2: Resumen de parametros modales obtenidos para la guia dptica Ag08

Modo Angulo incidencia Indice efectivo Angulo del Modo
0 28.75 1.677 88
1 27.75 1.673 85.5
2 26.25 1.667 83

18



OPTICA INTEGRADA: ELABORACION Y CARACTERIZACION
DE GUIAS DE ONDAS PLANAS

La solucidn de la ecuacion de resonancia para esta muestra (Ag 08), dio como
resultado un indice de refracciéon de la guia éptica ny = 1.678 y un espesor efectivo
h =4.513 um .

Discusion de los resultados

Los resultados aqui presentados representan un avance respecto a la tarea
sistematica de fabricacidn y caracterizacion de guias Opticas que se tiene por delante.

Un analisis interferométrico de las muestras realizadas permiten afirmar que
las muestras realizadas por difusién térmica son de mucho mejor calidad que las
realizadas por intercambio idnico, notandose en estas ultimas irregularidades tipo
burbujas.

Con respecto a los resultados obtenidos con la muestra Ag 03, estos son
coherentes con la teoria, no obstante la limitacion, respecto a la excitacion de solo
tres modos se puede explicar por el hecho de usar un liquido de contacto con el
prisma, con lo cual el angulo limite de acople se fija alrededor de 81°. Medidas
precisas a realizar podran confirmar estas conclusiones.

Reconocimiento

Los experimentos de éptica Integral y enfoque tedrico descritos fueron
realizados en el marco de un Curso Teorico/Experimental desarrollado en nuestros
Laboratorios por el Profesor Mauro Lomer de la Universidad de Cantabria, entre
el 10 y 21 de Agosto 1998, lo cual ha permitido abrir una linea de trabajo de
implicancias tecnolégicas importantes, por lo cual quedamos muy reconocidos.

La realizacién de este curso tuvo el apoyo del Instituto General de
Investigacion de la UNI (IGI), por lo cual quedamos también muy reconocidos.
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Tecnica de control de
vibraciones

Jorge Luis Palacios Felix (%)

Introduccion

El objetivo de este trabajo es describir la técnica de control optimo que pucde
ser aplicada en el estudio y simulacion de las respuestas de vibraciones de estructuras
flexibles como puentes sujetas a excitaciones de cargas dinamicas. La ley de control
éptimo de lazo cerrado, como problema regulador es utilizado. El modelo del sistema
estd gobernada por ecuaciones diferenciales parciales de la viga de Euler-Bernoulli
apoyada en los extremos. Para estudiar la respuesta dinamica controlada,
aproximamos el modelo a través de ecuaciones diferenciales ordinarias de funciones
modales. La simulacion numérica es resuelta por programacion en Matlab para
demostrar la efectividad del control activo.

(*) Universidad Nacional de Ingenieria, Facultad de Ciencias, Casilla Postal 31-139,
Lima - Peru.



TECNICA DE CONTROL DE VIBRACIONES

Modelamiento de un puente
p(1)

V

M(t) M(t)

AN ”
/S 7/
I
T(t) T(1)
a _ <G
<G
N :

Figura 1: Mecanismo de control activo®

Consideramos un puente de una sola extension idealizado por una viga de
Euler-Bernoulli con apoyos simples. El mecanismo de control mostrado en la figura
| es usado para cl control de la vibracion de puentes y la ecuacion de movimiento
del sistema mostrada en dicha figura es

ey 2

oty 57y .
E122 v m&L = PS(x —vi) + M(N@ (x—a) = M5 (x = L+a) (0.1)
ox ot~
M (1) = Sifu(r) + v'(a,1) = ' (L — a.0)] (0.2)
Donde
s = modulo de Young.
= momento de inercia de la seccion de la viga.
m = masa por unidad de longitud.
o = primera derivada de la funcion delta de Dirac.
a= distancia desde el poste al proximo apoyo.
p = velocidad constante de la carga dinamica.
L= longitud de la viga.
y = desplazamiento lateral.

M) = momento de control.
= rigidez del resorte.
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[ = longitud del poste.

u(t) = representa la elongacion o comprension en el resorte debido al
mecanismo de control.

1 (a, t) y ¥y (L-a, t) = representa la elongacion o comprension debido a
la deformacion de la viga.

Son consideradas las condiciones de frontera:

90D _ on=0, & M_ W(L,1)=0 (0.3)
Ox~ ox?
Solucion modal
La solucién de la Ec. (0.1) es asumida como
v(x,0)=2, ¢;(0)4,(1) (0.4)
J=1

donde 4; = coordenada generalizada del modo j; y ¢, (x) = sen (jmv/L) satisfaciendo
las ecuaciones diferenciales

d
4, )—a) Smg (X) (j=12,...) (0.5)

d?

y las cuatro condiciones de frontera en los extremos de la viga. Considerando su
valor de Ia funcién ¢, (x) en la Ec. (0.4), tenemos

-5l 2 0
7=l

sustituyendo esta ecuacion en la Ec. (0.1), aplicando las relaciones de ortogonalidad
de las funciones sen (jmx/L), j = 1,2, ... y usando las propiedades de la funcion
delta de Dirac, obtenemos las ecuaciones diferenciales ordinarias en términos de los
modos normales:

A4, +a)3‘Aj(t)=2—IZsen(QJ)— Blu()+Y. CiA (0} j=12 ... (0.7
m -

donde ;= jmv/L; B, = (4Sljx)/ L’m) cos (jrna/L) para j impar; B; = 0 para j par.
Cy = ((2I7k) / L) cos (kma / L) para k impar, Cy = 0 para k par. La frecuencia natural
w; es cbtenido de
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s jiat El

L4 m

J

El problema de control éptimo regulador

Consideramos un problema de regulador de estado. Basicamente, la solucion
del problema regulador de estado lleva a un sistema de retroalimentacion 6ptimo
con la propiedad que las componentes del vector de estado son mantenidos cerca

de cero sin gasto excesivo de control de energia. Consideramos el sistema lineal
de estado

(1) = Ax(1) + Bu(t) + d(1); X(fp) = X, (0.9)

y(t) = Cx (1) (0.10)

donde x = x (f) es un vector n x | que representa al estado del sistema; u = u (t)
es una variable de control irrestringida de r x 1; A y B son matrices de dimensiones
apropiadas; d = d(¢) es un vector n x 1 que representa la perturbacion: y =y (/)
es un vector m x | que representa las variables de salida; y C es la matriz de
dimension apropiada. Una funcion objetivo o de costos es usualmente definida en
términos de aquellas especificaciones disefiadas. La minimizacion de la funcion costo
lleva a una estrategia de control dptimo, la funcion objetivo es escogido como una
funcion cuadratica la forma

/= % [)’(f/ )]T So [.V(’/ )]+%~‘:}, ([)’(’)]TQO[Y(’)]"' “T(’)R(’)”(’)) dr(0.11)

donde So, Qo, e R son matrices ponderadas de dimensiones apropiadas; Sp ¢ Qo deben
ser por lo menos semidefinida positiva; R debe ser definida positiva: Tambicn las
matrices CTS¢C y CTQoC son semidefinidas positivas y que el sistema de Ecs.
(0.9) y (0.10) son completamente observables.

Sustituyendo y(t) ** en la Ec. (0.11) obtenemos la relacion

J= % [t )] €7s Clxi )]+ -;-j’ (x" ()CTQuCx(t) +u” Ru(1)) di (0.12)

La condicion necesaria para una solucion optima para ¢l problema regulador
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pucde ser obtenido de la formulacion Hamiltoniano. Para el problema regulador,
el Hamiltoniano es definido como:

l I
H(x,u2) =~ x"C"Q,Cx +~7~uTRu + 2T (Ax + Bu) -(0.13)

s

en el cual A = A(r) es un vector de n x | y denota las variables de costos
(multiplicador de Lagrange).

La variable de costo A(r) sea definida como

M) = K(t) x(1) (0.14)
para todo 1 e l’oJ/ J La minimizacion de la funcion objetivo J da el control optimo:
u (t) = -R'BTK()x(7) (0.15)

El control dado por la Ec. (0.15) depende solamente sobre el estado actual
del sistema y asi este representa un control de lazo cerrado. Donde K(¢) se le llama
matriz de Riccati que satisface la ecuacion diferencial:

~KO)=KMNOA+ATK@O)-K(@BR'B'K(1)+C"Q,c  (0.16)

para todo ¢ e [{0,1, J con la condicion de frontera

K(t) = CTS,C (0.17)

Construccion del espacio de estado
Considerando los modos controlados (modos impares), de la Ec. (0.7) resulta:

A () + ! A (1) = 3’% sen Q1 — B, [u(t) + C, 4, (1) + C,(1)] (0.18)

m

. , 2P
Ay () +0iA (1) = - sen Q1 = By [u(t) + C A, (1) + C5 (1)] (0.19)
m

Definiendo las variables de estado como
x, (1) = A x5 (1) = 4,
x5 (1) = A, x4 (1) = A,
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Las Ecs. (0.18 y 0.19) pueden ser reescritas en la forma de estado de acuerdo
al problema regulador

X()=A x(1)+ B, u(r)+d(1) (0.20)
donde
A( = A = BB/(;]
B. =-B B,

d(t) = Br(1)

En las ecuaciones precedentes, A, B, B,, r(1), y (j son dados por

0 I 0 0 00
~—of 0 0 0 I 0
A=| B= B:B‘i
o 0 0 1 0 0 © By
0 0 -w; O 0 |

) 2P (sen Q1 e o b
r = — — .
mL | sen Q¢ J (€ 3 )

Asumese que solamente una sefial de medicion esta disponible. Esta seial
representa la razon de la rotacion de los postes y cs cxpresado por

y(t)=Cx(1)=[0 %l 0 %‘-jx(f) (0.21)

Como el rango de C es la unidad, las matrices So y Qo son dc dimension
| x 1. También, la dimension de Res 1 x 1 dado que solamente una scial de control

es abastecido al sistema.

Simulacion numeérica

Un conjunto de entradas de datos en la tabla 1 es usada en cste trabajo para
examinar la respuesta de las vibraciones de un puente debido a una carga dinamica
bajo un sistema de control activo.
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Tabla 1
Entrada de parametros para el estudio de simulacion de control activo.

L =100 fr (30,5m); a =10 f(3,05m);

fo =20 kips (89000N), EI = 12100 /b - in?;
m =03 1b- s/ in> (2,07x10°Ns? / mm?);

v =00 fps (183mls). =3 fr(0,915m)

S = 02,5 kips/in. (109498 N/mm) x,=L/2 m.

La respuesta completa de la deflexion en el centro del puente, asumiendo
condiciones iniciales nulas. Se muestra diferentes valores para Qy. So. y R en las
siguientes figuras 3 y 4. En los ensayos por computadora son obtenidos los valores
respectivos de Q, So y R para hacer un efecto de reduccion de la deflexion respuesta
del sistema (del puente con mecanismos de control).

03r

(]
N

01

Deflexion {(m)

Tiempo (s)

Figura 2. Respuesta de la deflexion en el centro considerando tres modos para matrices
ponderadas --, R = 9,5e4, Qp = 1000, Sp = 0; -.-, R =1e8, Qy = e5; Sy = 100, ..., sin control y
los controles optimos.
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Deflexion (m)

02r

-0 2 L 1 L 1 1 1 - 1 : )
0 1 2 3 4 5 6 7 8 9 10
Tiempo (s)

Figura 3. Respuesta de la deflexion en el centro considerando tres modos para matrices

ponderadas -.-, R = 5e5, Qp = 1000, Sp = 100, -, R =e6, Qo =e4; Sp = 100, ...,
sin control y los controles optimos.

Conclusion

Hemos utilizado la teoria clasica de control optimo. en la simulacion numcrica
se observa que las matrices ponderadas influyen en la minizacion de la
respuesta de vibracion de un puente sujeta a una carga dinamica.

Hemos resuelto la matriz de Riccatti en funcidn del tiempo, mientras que en
otras investigaciones sobre el control de vibraciones de edificios sujctas a
excitaciones sismicas se ha utilizado a la matriz de Riccatti como constante.

La importancia de controlar los parametros como masa, resorte y amortiguador
para cl diseno del sistema es lo mismo que saber la posicion de actuadores
y sensores del mecanismo de control.

El método de control 6ptimo estudiado tiene la capacidad de controlar
activamente la vibracion de una viga sometida a una carga dinamica. El
algoritmo de control regulador es usado cuando, posiblemente. la perturbacion
sea desconocida y examinar el mejor desempeiio obtenido.
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Lnumeracion de ceros de
polinomios complejos

William Carlos Echegaray Castillo (%)

El presente trabajo encuentra la forma de enumerar ceros de polinomios
complejos.  Los algoritmos para enumerar ceros polinomiales usan
basicamente el Teorema de Sturm y el Principio del Argumento en ciertas
regiones, es decir, en cada una de las regiones del plano complejo dadas,
saber el mimero de ceros existen (que pueden ser un circulo, un rectangulo,
etc.); cabe indicar que a partir de la enumeracion también podemos aislar las
raices de polinomios complejos.

1. Introduccion

El objetivo del presente trabajo es calcular las raices del polinomio

p) = az" + ayl 2+ a2 L0+ a2+ a, (1

[

donde {ay.a,,....a, a,}< C e a, # 0, ademas restringimos, los coeficientes a la

siguicnte forma Re(a,), Im(a,)eQ vi=0,1,2,..., n.

(*) Universidad Nacional de Ingenieria, Facultad de Ciencias, Escuela Profesional de Matema-
tica.



ENUMERACION DE CEROS DE POLINOMIOS COMPLEJOS

A este tipo de polinomio le llamamos «Gaussianos». Esta clase de polinomios
nos permite obtener una aritmética exacta, asi todos los errores pueden ser
«eliminados», debido al uso de los métodos de computacion algebraica [TRE 92].
Hasta ahora, sabemos que el calculo de las raices polinomiales es una herramienta
importante en gran parte del «software» matematico. teniendo muchas aplicaciones
en diferentes areas. También se sabe que no existe una formula que nos permite
hallar los ceros de polinomios con grado n > 4: por tanto necesitamos de alguna
técnica para poder encontrar tales ceros, describiremos algunos de estos metodos.

Definicion 1.1. Enumerar ceros de um polinomio e¢s saber cuantos ceros
tiene una determinada region (puede ser degenerada) cerrada.

En las definiciones anteriores. aritmetica exacta es necesaria para que podamos
aislar y enumerar ceros. Cabe indicar que esta aritmética no conduce generalmente
a encontrar los ceros exactamente, esto nos lleva a dar a siguiente

Definicion 1.2. Calcular ceros de un polinomio es aproximar a la raiz
< €, donde w es la raiz de p(z) (es decir

deseada por el usuario, esto es Iw— W,

pOw) =0), ws es la raiz aproximada a wy € > 0 tan pequeiio como se desce.

2. Enumeracion de raices

Presentamos en esta seccion dos resultados que permiten la enumeracion de
ceros de polinomios en regiones del plano complejo.

2.1 Principio del argumento

El principio del argumento es una de las herramientas mas usadas para contar
los ceros de una funcion analitica (en particular de un polinomio), cn ¢l interior de
una region cerrada. Presentaremos aqui una prucba que por ser tan elemental. merece
su atencion.

Teorema 2.1 (Principio del argumento). Sean Cuna curva de Jordan simple,
cerrada, y p(z)=0, en C definido en (1). Sea Ae Arg(p(=)) la variacion en
la funcién continua Arg(p(z)), cuando z recorre C en el sentido anti-horario.

Entonces el numero de ceros de p(z) dentro de C, contando sus multiplicidades,

es dado por:

!
N=§ Ac Arg(p(z)). (2)
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Es decir, N es el numero de vueltas que la imagen de p(z) da alrededor del
origen cuando = recorre C en el sentido anti-horario.

Prueba: Sean wy, wy, ... wy los ceros de (1) y consideremos 1y, W3y soces, Wy
los ceros en el interior de Cy w4y, W2, ..., W, los ceros en el exterior de C, entonces
podemos cscribir (1) de la siguiente forma:

pP2)= an(z-wi) (2- w2) oo (2-wy) (2~ Wpt1) e (2= 31y)

n

I
= Arg(p(z)) = Argla,) + Z Arg(z—w,)+ Z Arg(z —w))

1=l 1=p+]

Como el punto = describe C en el sentido anti-horario, entonces Arg(z-w)
aumenta 27 cuando <7< p, pero tiene una variacion total nula cuando p<j<

(ver fig. 1). Este hecho nos lleva a (2).0

Tambien por el Teorema del Residuo (ver [DET 69]) (2) se puede escribir

] ' - - —
N=om J.[p' )/ p(2)] dz

donde C también debe ser una curva regular.

2.2 Teorema de Sturm

Los resultados aqui presentados permiten contar el numero de ceros de
polinomios complejos en diferentes regiones del plano. La busqueda de métodos
cfectivos, hace que sea necesaria la definicion de la Sucesion de Sturm e Indices
de Cauchy. Como consecuencia del Teorema de Sturm, tenemos el resultado que
da el numero de ceros de un polinomio real en un intervalo.

. . ‘ Im(p(z))
Para cualquier funcion argumento, tenemos que tan (p(z)) = —_Re(/J(*)) ‘

variaciones en Arg(p(z)) pueden ser obtenidas contando los saltos en la funcion

Im(p(z))

Re(p(=)) cuando = recorre C. Cuando p(z) cruza el eje imaginario en el sentido

Im(p(z))

anti-horario, tan (p(z)) = -Re-(_/_)(")*) salta de o a -0 y si este cruzamiento fuera

cn el sentido horario, el sato es de -w a w. El conteo de estos saltos puede ser
hecha, usando el concepto de Indice de Cauchy.
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Figura 1. Principio del argumento.

' f(x)
Definicion 2.1 (Indice de Cauchy). Sea _g'(ﬁ\; una funcion racional en un
. c (x
intervalo [a. B] < R. El Indice de Cauchy, denotado por lf{ /E)} es dado por
g
_ _ , S (x)
la diferencia entre el numero de puntos en [a. 3] donde e salta de -oca > v

el numero de puntos donde 2(x) salta de oo a -o.

Establecemos la relacion entre el Indice de Cauchy y ¢l Principio del
Argumento por el siguiente

Teorema 2.2. Si C{(t, 2)/z = z(t). t € [a. B} es una curva simple, cerrada
v p(z) un polinomio definido como (1) sobre C, entonces:
Im(p(z))

Ay Arg(plz))=—m 1]} —=527 o

cArg(plz)) Re (o)) (3)

La prucba de este Teorema puede ser vista en [HEN 76].

En el caso particular donde C es un poligono, entonces podemos escribir

& Im(p,;(z)) 1
A Aro(n(z)) = — ] il ok bt
cArg(p(z)) = -7 Z[ ()(Re(p[(:))} (4)
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donde m es el numero de lados de Ce / es la longitud del lado i,y p; es la
parametrizacion del polinomio sobre el lado 1.

Ahora, usando los teoremas 2.1 ¢ 2.2, podemos concluir que el nimero de
ceros polinomiales dentro de un rectangulo son obtenidos por:

AcArg(p(2)) = _.li 1(; Im(p,(z))

2% " Relp, (2)) (>)

Observamos que aun es complicado enumerar los ceros polinomiales usando
los Indices de Cauchy por la relacion (5). A partir de ahora, introducimos la Sucesion
de Sturm, que nos permitira facilitar aun mads el trabajo computacional.

Definicion 2.2 (Sucesion de Sturm). Una sucesion finita {fo. i, . . . . [u}
de polinomios reales, es llamada una Sucesion de Sturin asociada con el polinomio
real p(x) (que solo admite raices simples) para el intervalo [a, ] si satisfuce las
propiedades siguientes:

() fola)#0,  fo(B)=0;

(i) Si f (§) = 0, donde 1 <k <m-1 ¢ a< &L PBentonces

Je1 () firnn (§) <0y

(iii) fm (x) = constante #0 para o <x < f.

Definicion 2.3. Sea fo(x), /i(x), . . ., fm (X) wuna Sucesion de Sturm en
[a, Bl donde o< B y sea xo € [a, ] con fo (xo) # 0. Definimos V (xo) como
el niimero de variaciones de signos de fo (xo), i (Xo), . . ., fm (X0), donde los ceros
son ignorados.

Si a e R, entonces V (a) es definido como Via + €) donde € es tal que
V k=0, 1,..,m [r(x)noseanula en <a, o + €>, similarmente para f3 € R.
Si o = -oo, entonces V() es definida como el numero de variaciones de signos
de lim f,(x) v de forma similar para V(B) cuando = .

V=

Haciendo uso de las definiciones (2.1), (2.2) y (2.3) se prueba el siguiente:

Teorema 2.3 (Teorema de Sturm). Sea fy (x), /1(xX), ..., [ () wma Sucesion
de Sturm, asociada a p(x) en [a. Bl, donde o < B vy sea V (x) el niimero de variacion
de signos a lo largo de esta Sucesion en el punto x.
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Entonces

/B fl (x)

s =V (a) -V (B).
IS (a)=V(p (6)

Prueba: Vea [HEN 76]

La relacion (4) puede ahora ser reescrita y tenemos que ¢l numero de ceros
de p(z) en el interior de un rectangulo (ver proxima seccion) es dado por

1 4
M=o 2.1, -1y, (7)
=]
donde /; es la longitud del lado i.

Damos el siguiente corolario que es una consecuencia del Teorema anterior,
muchas veces conocido como el Teorema de Sturm, y que da un modo de calcular
el namero de ceros reales de un polinomio real en un intervalo.

Corolario 2.1. Sea p(x) un polinomio real definido en el intervalo [a. .
con a < B v fox), fi(x), ..., fu(x) una Sucesion de Sturm asociada a p(x) con
Jo(x) = p(x), fi(x) = p’ (x), entonces el niimero m de ceros de p(x) en [o. f3] es dado
por

m = V() =V (p).

Por tanto la formula (7), como el resultado del corolario anterior nos dan un
método computacionalmente posible para la enumeracion de raices polinomiales.
desde que sea efectivo la determinacidon de una Sucesion de Sturm.

Ahora damos un resultado en esa direccion donde una Sucesion de Sturm
puede ser generada por el siguiente

Teorema 2.4. Dado el polinomio p(x) real libre de cuadrados en R no nulo
en [a, Bl con a < . Entonces la Sucesion

(a) fo (x) = p(x);
b)Y i ()= p'(x) y
N Si-a(x) p =2 3
(©) fr (x) = —resto _‘/-A'_"] o) | KT S e m

forma una Sucesion de Sturm, donde el “resto” significa el residuo de la division
de un polinomio qy(x) por otro q(x).
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Prueba:

Si-2(X)
Como f; (x) = -resto [f (x) entonces existe un polinomio gx.; (x) tal que
h-1 L :

Jia2a()= 10 (0g () = fi(x), V k=2,3,...,m (**)

donde deg (gi-1 (x)) = deg (fi-2(x)) - deg (fi-1 (x)) > 0. Sabemos que f, (x) = Bg(x)
donde B es una constante y g(x) es el maximo divisor comun de fy (x) y /; (x). Como
p es libre de cuadrados, tenemos que g(x)= constante # 0 .. f,,(x)= constante # 0.
Si fi1 (€) = 0, para 0 < k < m, entonces de (**) tenemos fi.» (§) = -f; (§) de aqui

Sia ©) /i (§) <0.

Si
Sz @)=/ (§) =0 (**%)

entonces, tenemos

St (&) = qik (&) &) - fir1 (B) = fix1 (§) =0
Ji (&) Grst (&) fie1 (&) - fim (&) = fim2 (§) =0

oz (€)= dmt €) fort () = for (8) = fon (&) = 0

esto es una contradiccion.

I

Observacion 2.1. En general, el teorema anterior también se satisface para
cualquier polinomio dados fi(x) y f>(x) no nulos, que no tienen raices comunes,
vy los polinomios f3, . . ., fu definidos por (c), que es conocido como el algoritmo
euclidiano (calculo del maximo comun divisor).

Ejemplo 2.1. Separar las raices de la ecuacion
p)=x3-3x2-2x+5=0 (*v)

En este caso tenemos

Jo (x) = p(x)
fi(x) =p (x) =3x2-06x-2

PRI
> (x) = 3773
473
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Ahora aplicamos el Teorema de Sturm en el intervalo [, f] = [ -2, 4].

Para x = -2 e x = 4, los polinomios generados por la sucesion de Sturm
del polinomio (*v) toman los signos siguientes mostrada en la tabla:

X Jo(x) Six) fax) f3x) | Cambio de signos
. - + . + 3
4 2 %+ - + 0

El niimero de raices en el intervalo [-2, 4] es V(-2) - F(4) = 3.

Observacion 2.2. Observe que si fix) = p(x) no es libre de cuadrado entonces
fo (X) = mdec (Ax), [ (x)) # constante, por lo tanto no satisface la parte (i) de la

Ji ()

definicion (2.2), pero ) Vk=0,12.....m gerq una sucesion de Sturm.
Jonr\”

Ejemplo 2.2. Mostramos un ejemplo para encontrar el nimero de raices
reales del polinomio

plx)= x0+ 435 + 4yt - ¥ -4y - 4

Aqui hacemos lo siguiente fo (x) = p(x) = A+ D) E2-1) (v +2)

fi (x) = p'(x) = 6x° + 206 + 1637 -2x -4 = (6 + 81 -2) (v + 2)

/v/\-_v () |
para generar las otras f; (x) hacemos uso de f; (x) = -resto | 7771 .

,/k—-; (-\-)_

k=2 3,..., m, entonces tenemos
fr(x) = 4xt + 8P + 3x + 14x + 16
i) =xP+6x2+ 12x+8
fa (x) = -17x% - 58x - 48
fs(x) =-x-2

donde los coeficientes se han hecho enteros por la multiplicacion apropiada de unu
constante positiva.

Observe también que la sucesion {fo (x), f1 (X), .~ ., [s ()} no forma una
sucesion de Sturm, pues fo (x) no es libre de cuadrados y fs (x) = -1 -2 = mdc
i (x)
(fo(x), f1 (X)) salvo el signo, pero \~ /;_(‘\5 Vo k=0,....5 ey una sucesion de Sturm,
sl

luego tenemos
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Shx) = -2+ 1) (- 1) (x + 2)
SAE) = -(6x* + 8% - 2)

SHE) = (@4 + 3y + 8)

FAD) = A2+ 4x+ 4)

J/dx) = 1ix + 24

S5y =1
24

~00 i -1 0 1 o0
S Jox) = - 0 + 0 s
S i) L N
S 2x) - + = - - -
/) - - S
ffitx) L T N R B
ff5x) S D N O N B

Numero de
cambio de signos 4 3 2 2 ] ]

Luego, tenemos tres raices distintas reales, dos raices negativas y una raiz

positiva. Aun que -1y 1 son ceros, el ejemplo muestra que existen dos ceros
24
distintos en <-o, -11 y tres en <-o, 1. El punto ——= ilustra el caso cuando

17
un fr (x) = 0.

Usando la sucesion de Sturm podemos enumerar los ceros polinomiales en
el plano complejo en regiones no acotadas.

El siguiente teorema establece:

Teorema 2.5 (Teorema de Routh). Sea p(z) = Az) + i8(z), donde A(z) =
Re(p(2)) e &(z) = Im(p(z)) son polinomios reales, con 8(z) # 0, y que no tenga ceros
reales, nl ceros (contando las multiplicidades) en el semiplano superior del plano
complejo € y n2 ceros (contando las multiplicidades) en el semi-plano inferior del
plano C.

Sea V(z) la variacion de signos obtenida en el punto z para la sucesion de
Sturm iniciada con A(z) y 8(z), evaluindose z e R, entonces para n = grad(p(z)),
se tiene
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nl = %(/H»V(@)—V(—oo)) v

n2 = %(n — V() + V (—0)).

Prueba Vea ([MAR 89])

Ejemplo 2.3. p(z) = 2° + 223+ (3 + i) 22 + (-63 + i), entonces
Mz) = Re(p(z)) = 2° + 223+ 322- 63 ¢ 8(z) = Imp(z)) =22+ 1 =0,

luego la Sucesion de Sturm tiene la forma

Soz) = A

Sik) = &)

fHlz) = z+ 66

fz) = -4357 = constante # 0.

Ahora V(o) =1 y V (-00) = 2. Aplicando el teorema (2.5) obtenemos:
I
nl 25(}2 + V(o) =V (-2))= ;—(54- 1 -2)=2
1
n2 :E(” — V() + V(—co)):-;—(S —-1+2)=3

aqui tenemos nl = 2 ceros en el semi-plano superior y n2 = 3 ceros en el semi-
plano inferior:

Para determinar el numero de ceros de p(z) en el semi-plano derecho, hacemos
la transformacion z <« iz, esto equivale a encontrar el nimero de ceros que p(z)
tiene en el semi-plano inferior del plano C.

Ejemplo 2.4. De nuestro ejemplo (2.3) tenemos:
pliz) = iz® - 2iz> + (3 -i) 22 + (-63 + i)
los ceros de p(iz) equivalen a obtener los ceros de
p(z) = :Tp(i:), entonces:

25 =223 + (=1 +30) z2 + (1 + 63i)

>

—_
[NV}

~
Il
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de aqui:

fo(2) = Re(p(z))=2" =22° = 2% +1

7
Z

fi(z) = /m(f)(;_')) =3z° +63
fr(z) = -483z - 22

4899553

-\ = —————=constante # 0.
5 @) 77763

Ahora, V(©)=1 e V(-») = 2.

Aplicando el Teorema (2.4), obtenemos que el niimero de ceros en el semi-
plano inferior:

/12=—;:()1—V(oo)+V(—oo))zé-(S—]+2)=3,

esto equivale a decir que tenemos n2 = 3 ceros en el semi-plano derecho del plano
C del polinomio p(z).

El grifico (2) muestra donde se encuentran las raices del polinomio del
ejemplo (2.4):

Wi

Ww>

Wsg

w3
Wy

Figura 2: Localizacion de los ceros del polinomio del ejemplo (2.4).
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Un resultado tipo Lyapunov
en calculo de variaciomes?

Veronica Briceno V. y Fabidan Flores Bazan (*)

1. Introduccion

El calculo de variaciones se ha ido desarrollando a lo largo de estos ultimos
tres siglos; es probable que sus inicios fueran en 1696, cuando Johann Bernoulh
plantea el problema de la Braquistocrona.

El problema de encontrar puntos en los cuales una o varias funciones alcancen
su valor minimo o méaximo, es un problema conocido; en Célculo de Variaciones,
el principal interés es mas extenso, descamos cncontrar funcionales integrales que
admitan puntos de minimo, es decir, aquellos puntos donde la integral alcanza su
valor minimo. Mas precisamente, nos interesa que ¢l problema:

min J() (P)

ze(

admita solucion.

' Trabajo basado en el material de investigacion financiado parcialmente por CONICYT-Chile
a través del Proyecto FONDECYT 197-0931 y FONDAP-Matematicas Aplicadas
(Optimizacion).

(*) Universidad de Concepcién - Departamento de Ingenieria Matematica. Casilla 4009,
Concepcion - Chile.
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La importancia del Calculo de Variaciones, se debe a la aplicacion que puede
hacerse en una amplia gama de problemas de la matematica pura. ademas, dentro
de distintas ramas de la Ciencia y de la Ingenieria, muchos problemas se dejan
modelar como un problema de minimizacion.

Vamos a iniciar nuestra discusion presentando en la Seccion 2 algunos
conceptos basicos, que nos seran de utilidad en nuestro trabajo.

Mostraremos en la Seccidon 3 el Método Directo que establece la existencia
de solucion para problemas cuando la funcional es secuencialmente semicontinua
inferiormente (s.s.c.i.). Citamos el articulo [F12] para una descripcion mas detallada
de este método, aplicado a problemas unidimensionales dependientes de la derivada
de primer orden. Dec la demostracion del teorema se obtiene la descripcién del
método. Dado que en nuestro trabajo usaremos un espacio de Sobolev, tenemos que
la condicion de s.c.i. es equivalente a pedir que la funcional sea convexa en la variable
de derivada de orden superior [Gi, Mo]. En el caso que la funcion integrando no
cumpla esta propiedad, no podemos asegurar la cxistencia de minimos; pero es
posible encontrar una clase de funciones integrando, no necesariamente convexa.
de modo que se pueda obtener la existencia; pero debemos suponer que las
funcionales son del tipo que se deja representar como la suma de dos integrales:
una dependiente de las derivadas de orden superior (la parte no convexa), y la otra
dependiente de la funcidn estado.

Es por esto que en la Seccion 4 enunciaremos el Teorema de Lyapunov [Ly].
Mostraremos ademas las variantes mas importantes [Ce, Br], que se utilizan para
probar resultados de existencias de minimos de funcionales integrales que no son
s.c.i. débilmente y tampoco regulares. Nuestro objetivo principal es mostrar como
este teorema ha sido aplicado en problemas de minimos no convexos en el contexto
del Calculo de Variaciones.

Finalmente, en la Seccion 5 presentamos una nueva variante que es adecuada
para tratar problemas que involucran ecuaciones hiperbolicas. Esta version nos
permite tratar funcionales integrales no convexas, que dependen de la derivada mixta
de orden dos, ademds de la variable estado, esto es, para la funcional:

J(z)y=glt,x,z(t, X))+ h(z, (t,x) + f(t,x,z,(,x)) (1.1)

probaremos bajo condiciones de Darboux sobre tres lados del rectangulo y bajo ciertas
hipétesis a precisar, la existencia de solucion para el problema (P). Referimos a
[Bri] para ver mayores detalles. Un problema similar fue cstudiado en [B-F] y
problemas de minimos gobernados por ecuaciones diferenciales parciales hiperbdlicas
mas generales fueron tratados en [Su2, Ra2].
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2. Resultados preliminares

Mostraremos a continuacion algunos conceptos, teoremas y proposiciones que
usaremos en nuestro trabajo.

Definicion 2.1. Consideremos F: X < K" — R'.

o Decimos que F es una multifuncion st ¥ xe X se asocia el subconjunto

(eventualmente vacio) F(x) < A"
o Se dice que es medible si para cada abierto C < K" el conjunto:
{xeX:F(,\')ﬁC;ﬁ(p}
es medible (de Lebesgue).
o La funcion f X' — R se llama seleccion de F si:
f(x)eF(x), VxyxelX.

Teorema 2.2. (Teorema de Seleccion Medible) [Cl, Cap. 3, Sec. 1, Teo. 3.1.1]
Sea F una multifuncion medible v cerrada en S, tal que F(x)#¢, VxeS.

Entonces existe una funcion medible:

f:S—>R" tal que f(x) € F(x), V xeS.

Proposicion 2.3. [Cl, Cap. 3, Sec. 1, Prop. 3.1.2]
Sea F una multifuncion medible v cerrada, sea g: R" x K' — K tal que:
a) V xeS, la funcion y — g(x, y) es continua, y

b) V ve R, la funcion x — g(x, y) es medible sobre S.
Entonces, la multifuncion G: K" — R' definida por:
G(x) = {y € F(x): glx, y) = 0}

es medible y cerrada en S.

Definicion 2.4. Si consideramos Q un rectangulo en K%, definimos el espacio
de Sobolev W' (Q) que consiste de todas las funciones en L7 (Q) tales que todas
(y s6lo) las derivadas parciales mixtas, en el sentido de las distribuciones, hasta el

orden 2, de las variables independientes, cstan en L” (€2) esto es

@) e L(Q) 5,20, € L))
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Sobre este espacio definimos la norma:
“Z Wy i”Z”p +”Z’"p & IZ-"“p +”z’-\'”p'
Con esta norma el espacio W' (Q) es un espacio de Banach, donde ””/,

denota la norma en L(Q). Es claro que, para cualquier rectangulo Q, se tiene que:
W2 (Q) < W' (Q). Referirse a [Sul], para un estudio de este espacio.

3. Meétodo directo en calculo de variaciones

Este metodo es usado al abordar la teoria de existencia, que fue iniciada por
Hilbert en 1900, y desarrollada por Tonelli [To], Mc. Shane y otros.

Consideremos K un subconjunto de un espacio topologico X. El siguiente
teorema nos entrega las condiciones suficientes para asegurar que una funcional
alcance su minimo.

Teorema 3.1. Dado un conjunto no vacio, y una funcion J: K = R {+o0} acotada
por abajo, tal que:

(1) K es secuencialmente compacio,

() Jes s.s.ci. sobre K,

entonces 3 x. € K tal que: J(x+) < JKX), v x € K

La idea que desarrolla el Método Directo en el Célculo de Variaciones para
demostrar la existencia de minimo, puede resumirse de la siguiente manera:

I. La integral a minimizar es acotada por abajo; por consiguiente, el infimo
es finito, y por tanto, existe una sucesion minimizante.

2. Demostracion de la existencia de una funcion limite para esta sucesion;
en realidad, basta demostrar que sea para una subsucesion de ella.

3. Demostracion de la s.s.c.i. de la funcional en la funcién limite.

Usualmente, se trabaja con espacios de Sobolev y se usa la topologia débil.
Se prueba (ver [Gi, Mo]) que la condicion (ii) dada en el teorema anterior, es
equivalente a decir que la funcion h es convexa (ver (1.1)).

4. Kl teorema de Lyapunov: Algunas variantes

Nuestro interés es estudiar funciones no convexas en la variable donde la
derivada sea de orden superior, por tanto, no podremos aplicar el Método Directo,
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de aqui la importancia de usar el Teorema de Lyapunov [Ly], presentado en 1940,
el cual ha sido aplicado en problemas de minimos no convexos en el contexto del
Calculo de Variaciones, y que nos sera util para probar existencia de minimos de
funcionales integrales que no son s.s.c.i., y tampoco diferenciables.

Teorema 4.1 (Teorema de Lyapunov) [Ly]

El rango de una medida vectorial finita no atomica es un conjunto convexo
v cerrado.

Ejemplo:
;1(/4)=J‘.;f dv, u<<v, fel', AcR

En 1963, L. W. Neystadt [Ne]. fue el primero en utilizar los resultados de
Lyapunov en teoremas de existencia para problemas de control optimo.

Desde 1972 a 1980, L. Cesari (referirse al libro [Ce]), generaliza cl trabajo
de Neustadt a todas las formas de problemas de control gobernados por ccuaciones
diferenciales ordinarias. La siguiente version del Teorema de Lyapunov es debido
a L. Cesari [Ce, Cap. 16], antes veamos algunas notaciones.

Consideramos 4 < R' un conjunto medible, con medida de Lebesguc finita
en K", en realidad, para las consideraciones siguientes A serd un intervalo [a. b] en

R.

Sean, ademas _/“»”({):(fl‘-”,...,/“»” te A j=1,..., h funcioncs

Jon 9
vectoriales dadas, cuyas componentes son integrables en 4. Consideramos particiones
arbitrarias E,, . . ., Ej de 4 en subconjuntos medibles y disjuntos, cs decir,
E.nE.=¢ uv=1,..., hhu=vyital que 4= U” E,. Entonces

/_l = /'I(EI"”’ Eh)

— Jl:‘l 7Y di +...+J'~ ARG 2

£,
define un conjunto K de R" cuando la particion £\, ..., £, describe todas las posibles
particiones de A en subconjuntos medibles £, de A para j=1,.. ., h.

Analogamente consideramos funciones pesos medibles arbitrarias p,. con
O<spi (<t j=1,...,h ypm(@O+...%ph (n=1,1¢€ A
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Entonces,

=4

vo=p(prses py)

= J::;I f(l)({) dr + ... + .[E,, f(h)(f) dr,

define un conjunto K de K" cuando py, . . ., p; describe todos los posibles sistemas
de funciones medibles p, (1), 1 € 4,0 < pO<Lj=h oL hpr ()+ ..+ py
(n =1.

Teorema 4.2. [Ce, Cap. 16, Sec. 1, Teo. 16.1.v]

Los subconjuntos H'y K de R" son convexos, compactos y H = K.

Observacion 4.3. Asi del teorema anterior, se tiene que:

Dadas fU(ny=(f"",....f\"), j=1,...,h, funciones medibles de R a

1

K"y funciones peso p, con 0 < p, (1) < Iy para j = 1,. .., K,y tales que p; (1)
+.. .+ pp ()= 1.
Entonces, existe una particion medible {4, . . ., 4;} de R", tal que:

h h
JoZ m@ S A3 [ S

En 1993, A. Bressan prueba la siguiente version del Teorema de Lyapunov,
aunque ya una version similar fue establecida en [A-L].
Teorema 4.4. [Br]

Sean las funciones f, € L' (R") donde f: R' — R" y los pesos medibles
p: B — 0,1, i=1,... v tles que Zp, (x)=1, para todo x € R'. Dado

cualquier conjunto finito {vi, . . ., v} de vectores no nulos en R', existe una particion
medible {Ay, ..., A}y de R'tal que v j=1,...,k se tiene que:

f”Z; p (X + v ) [ (X +hv,) dh = Zl Jone e 35"+ Av;)
1= =
para casi todo x' en el hiperplano perpendicular a v,

Esta version permite tratar problemas de minimizacion no convexos, que
involucran ecuaciones hiperbolicas sobre un dominio rectangular, con condiciones
de Darboux sobre toda la frontera, como se muestra en [B-F].
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En [F11], se presenta una aplicacion del Teorema 4.2, a problemas de minimos
con simetria radial, dependientes del Laplaciano.

Otras versiones pueden verse en [C-M, A-M, Ral]. Pero las distintas variantes
que existen no permiten tratar problemas donde la funcion integrando dependa de
la derivada mixta.

S. Un nuevo resultado del tipo Lyapunov

Consideremos /i: K — K una funcion boreliano, donde /:** denota la funcion
bipolar de /1, definida como la funcién convexa y s.c.i. mas grande, pero no mayor
que /.

Tenemos entonces la variante del Teorema de Lyapunov. Para una version
mas general, referimos a [F-P].

Lema S5.1. Sea R =[O,T]>< [a.l)] un rectangulo en R,y v una funcion

medible tal que (1, x) = h™" (v (tx)) esta en L'(R). Ademds, sean a. 8 tales que
o< a< ff <+, de modo que:

BTE<hE). Y E ek pl K@= ha). KT(BY=hP)  (5.1)

Ysea E = {(z,,r) eR:a<vt,x)< [3} distinto de vacio.

Entonces existe una funcion medible w que toma valores en {a, B} para
(t, x) € E, que verifica:

b b
a) j: w(t, x)y (1, x) dx = L v(t, x) x g (1, x) dx;
h -
b) L h(w(t, X))z (1, X) d.\':J‘” h (v, X))y (1, x) dx;
ademas, V xe [a,b] se cumple:
c) J‘xw({,.s')xf(l.s) ds < E‘v(l,s);g[;(f,s) ds, YV ie [O, T]

Demostracion:

Para ¢ € [0, 7] fijo, consideremos la funcion:

é b b
w(d,t) :I oy (1, x) dx + J(s By (4, x) dy — L v(t, x)y (1, x)dx.
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Se tiene que:

w(-0)eC(a,b]), v w(5,) es medible. (5.2)

Definimos la multifuncion:

F:[0,7] — 2"
[ = F(1)={5e[a,/)]:q/((S,/):O}

De (5.2), usando la proposicion 2.3, se tiene que F es medible y F(r) cerrado;

del Teorema del Valor Medio sabemos que F(1)=¢, V te [O, T]. Entonces por el
Teorema 2.2, existe &, seleccion medible de F.

Sea w: M — R, definida por:
WL X) = QY pnfo.rWos ] (1 X) + Bx En(or} s8] (1Y)

Se tiene que w es una funciéon medible Para probar esto, basta ver que:

K={tx)eR:8(1)<x}
es un conjunto medible.

Ahora, la definicion de 9, se tiene:
b » b
L {O‘X 1:m[o,r]«[a.5(r)](’ ,X)+ By Eq[0.T ks (1).6] (1 w\')} dx = J‘a (1, x) x (1, X) dx.

Y por tanto, se verifica a).

Por otro lado V & € [a, ,B] tenemos que /i (£)=mé& +c, para algun m y c.
Luego,

JI)/z H (v(t, X)) x (1, x) dx mv(f X)+c x g, x)dx

J mw(/ ‘)+C}Xr(’ x)dx, por a)
_[ hOv(t, X))y g (6, x)dx, por (5.1).

Asi, se cumple b).

48



UN RESULTADO TIPO LYAPUNOV EN CALCULO DE VARIACIONES

La desigualdad c). se obtiecne del siguiente razonamiento:
Fijamos x € [a, b], sea t e [0, T], entonces:

V (t.x) e R, sea | = j:[\t’({,s)—\’(I,S)]}{E(I.S)(/S.

Si x < 6(1), entonces [/ J‘“‘[a - v({,.s*)];(,;(t.s)a’s <0.

Por otra parte, si 6 (f) < x £ b, entonces

I = I:[w(f, §) = v(t,5)y g (1.5)]ds - I:)[w(t, §) = v(t,5) |y £ (1, 5) ds

h
= — —_ y ~ r <
L[ﬁ v([,s]xk (1,5) ds £0.
Lo que concluye la demostracion.

Observacion 5.2. Si en la definicion de w y de w cambiamos “a™ por “f.
obtenemos los mismos resultados del Lema 5.1, sélo que en c) la desigualdad cambia

de sentido.

Observacion 5.3. De la demostracion anterior se ve que podemos obtener una
funcion w medible, que verifica las condiciones del lema anterior. pero en la otra
variable.

Observacion 5.4. No puede obtenerse una version donde v: W < & — A",
para 1 > 2; esto queda claro al estudiar el caso para n = 2, donde considcramos
R = £ = [0, 177, la multifunciéon @ (1,x) = {A (1, x) : X € [0, 1]}, y sca la funcion

medible v(r,x) = % (1, x).

Se prueba que no existe una funcion medible w = (31, w2), la cual toma
valores sobre ({(0, 0), (1, x)} c.t.p. que verifique las condiciones del lema anterior.
Comparar con el ejemplo dado en [A-M].

Lema 5.5. Suponemos que: {& € B h™" (&) < h(&)} = Ui }lwﬁl[ donde

}l,,ﬁ,[ son intervalos disjuntos, con -0 < a, < 3 < +o0, con i i gl i
conjunto contable; v, h*"(a,) = h (o), 1" (B) = I (By).

Ademas, h es tal que verifica la siguiente condicion de crecimiento:
nE)2cg|” —k donde ¢ >0, ke R 1 <p<+em
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Suponiendo que existe v € L (W), tal que (1, x) — h™" (v (1x)) es L' (M),

entonces existe w e LV (W) que toma valores en U, {a,,ﬁ,} sobre:

{(,,.\') € 9{ :1’(f,.\‘) € Uhl ) /31 [}’

verificando:
b h b D ax
(i) L w{t, x) d.\'=J.u v(t, x) dx; (i1) J:; h(w(1,x)) dx = _[ h (w(1,x)) dx;
ademas, ¥ x e [a,b]. se cumple: |

iy ['wits)ds < [wes)ds, ¥ ielo,T)

Demostracion:

Definamos: E, = {(1‘,,\‘) eN: a, < v(r,.\')S,B,}, E=U’ E,E, =R\E.

Aplicamos el Lema 5.1 a cada conjunto £, se tiene que existen wi funciones medibles
que toman valores sobre {c, S}, que verifican las condiciones a), b) y ¢). Sea
w: R — R, tal que:

w(t,x)=v(t,x) g g (6x) + 3w, (6, x) g (1)

Se prueba que esta funcién satisface (i), (i) y (iii). Ademads, de la condicion
de crecimiento se tiene que w e L (‘R).O

En realidad, respecto de las hipdtesis del Lema 5.5, la condicién de crecimiento
sobre la funcion / implica la existencia de los a,, 3, con tales propiedades (ver
Proposicion 5.7).

Problemas de minimizacion no convexos

A continuacion presentamos dos tipos de funcionales, para las cuales
probaremos, bajo ciertas hipdtesis, que cada una de ellas alcanza su minimo, por
una aplicacion directa del Lema 5.5.

El razonamiento sera analogo en estos casos, y puede resumirse de la siguiente
manera: sc inicia considerando el problema de minimizacién (P*) asociado al
problema original (P), el problema (P*") se obtiene, de reemplazar la funcion /i por
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h*" en la funcional J, ver (1.1). El problema (P") es tal que si J™" es la funcional
asociada al problema (P"7), se tiene

J()SJGE), Yz oy omin J ()= (Fep

Luego, utilizando la variante del Teorema de Lyapunov que demostramos en
la seccion previa, es decir, el Lema 5.5, se prueba que existe una funcion = que
satisface:

J(E)=J " () =min J" (z) < min J(2)
lo cual implica que Z es solucion del problema (P).
Usualmente, el problema (P™") se llama problema convexificado.

En nuestro trabajo siguiente, consideramos el rectangulo R = [0, 7] x [a, b]
en &% denotamos £ la dlgebra de Lebesgue sobre X, y (&) denotara la algebra de
Borel sobre R.

Las siguientes proposiciones nos seran utiles en nuestro trabajo posterior.

Proposicion 5.6. Sea z" una sucesion en <, tal que existe M € R* de modo

que: |zn|l <M. Entonces, existe z € ., continua tal que:
)

“n
/
" ——z uniformemente, z" —z, en L’ (K), z" =z en L7 (K),

" =z en LP (R).

“ 1y

Proposicion 5.7. Si 11(5)2015’/) —k, donde ¢ > 0, ] <p <+, k € E

entonces {& e R: h™" (&) < h(E)} = U, }1,’/3,[ donde }1,,[3,[ son intervalos

¥ %

disjuntos, con -0 < q, < 5, < +oo, con i variando en un conjunto contable; v, I

(o) = hla), ™ (B) = h(P).
Consideremos la siguiente

Hipotesis (H1)

Sea g: X x R— R tal que:
(g1) g es L x K (R -medible.
(g2) zH=> g (1 x, z(1, x)) es s.c.i. para c.t.p. (1, x) € K.
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(g3) zP> g (1 x, z (1, x)) es mondtona para c.t.p. (1, x) € X.

(g4) 3T, 20 tal que g(¢, x, 2) Z—c,lzlp —k;(t,x), Kk, el (R).

Sea /it R — R tal que:
(l) Thess.c..

(h)  dJ ¢, >0 tal que 11(5)202‘§}p~k_,, k,eR.

Sea f: K xR — R tal que:
(fi) [fes £ x B(R) -medible.

() v f(f,x,v) es mondtona para c.t.p. (¢, x) € X.

(3) v f(f,x,v) es convexa para c.t.p. (1, x) € X.

()  3e;20 tal que f(vV)2—c;|" ~k;, k; € R

Ademas, se impone que:

/)
z/’ ol +c,

1-2""b-a > 0. (5.3)

Cs

Debemos hacer otra suposicion, que es la siguiente: / y g son mondtonas en
el mismo sentido, esto quiere decir que ambas son no crecientes o ambas son no
decrecientes.

Consideremos:

min J,(z
zeZ l( ) (Pl)
donde:

Ji(z) = f L, g(t,x,z(t,x)) dt dx+f L, h(z,.(1,x)) dt dx+

+J L, ft,x,z,(t,x)) dt dx

el conjunto £ se define como:

Z i{zeW*"’(/\’): z=@,en €0, K, z<y, en e/\’},

donde 8,K =1{0}x [a,b]u [0, T]x {a}u {T}x [a,bl y, ¥ es una funcion medible;
ademas ¢ es una funcidn continua sobre J + K tal que las restricciones de ¢ a
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cada uno de los tres lados del rectaingulo A es absolutamente continua. denotada
por AC, con derivadas en [# donde 1 < p <+, es decir ¢ € AC (0« X). ¢ ¢, €
L’ (0+ K).

Por otra parte, sabemos que v -e /" (X) se verifica:

Z(t, )+ z(0, a)-z(0,x)-z(t, a)= _[(; J: . (r.s) dr ds.

En particular, si =z € £ tenemos:

2(1,3)+ 9(0,@) = 9(0,x) ~ p(t,0) = | ; | = (r.s) dr ds.

Teorema 5.8. Sean f, g v h que satisfacen las hipotesis (H1). Si Jy (z) toma
un valor finito para algiin z € Z, entonces (P1) admite al menos una solucion.

Demostracion:
Se divide en tres partes:

A. Probar que el problema convexificado (Pf ) ticne solucion usando (5.3).
y siguiendo el razonamiento del Método Directo, descrito en la Seccion 3.

B. Sea z una solucién del problema convexificado y supongamos quc

S x, )y g(t x, ) son no decrecientes para c.t.p. (7, x) € N. En virtud de la

Proposicion 5.7, podemos utilizar el Lema 5.5 para v="=

“ N

e L”(R), y asi obtenemos

que 3 we L? (K) que verifica:

b b~ -
[ wlex) dx=]" %, () d (5.4)
b b T _
[ hOw(t,x) dx =] 07 (5, (1.2)) d (5.5)
j" w1, ) d.s-sj: 2 (ts) ds, ¥ (1.x)e(K). (5.6)
C. Consideramos:
o (1, X) = w (1, X) (5,7)

z (0, )= ¢ (0, x)
z(t, a)= o (1, a)
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Demostraremos que z, solucion de este problema, es solucion de (P)). Es fécil

ver que z (7, x) = @ (T, x). De (5.7) y (5.6), tenemos:
z(t,x)<Z(1,x), para ct.p. (t,x)eX.

z, (,x)<Z,(t,x), para ct.p. (t,x)eX.

Asi, z € L.

(5.8)

(5.9)

Veamos que z es minimo de (Py) como f(4, x, *) y g(4 x. -) son no decrecientes

para c.t.p. (1, x) € K, entonces (5.8) y (5.9), implican que:
glt,x,z(t,x)) < g(t,x,2(1,x)), (1,x)eX.
Sz, (XN [(t,x,2,(1,x)), (1,x)eX.

Por tanto:

[T, stmzty deas< [ ] g,
[, F@xz oy dode<|] re,x% @0) dedx

~

z(t,x)) dr dx

Por otra parte, de (5.7) en (5.5), obtenemos

| L, Iz, (1,%)) dt dx = | jK B (Z.(1,x)) dt dx.

Lomo Zz es solucion de (PI”), (5.14) implica que

ij g(t,x,z(t,x)) dt dx +.H;c St x,z,(t,x)) dt dx >

(5.10)
(5.11)

(5.12)

(5.13)

(5.14)

> jK g6, %,Z(1,x)) dr dx + | jK F(,x,Z,(,x)) dr dx.

Esto, junto con (5.12) y (5.13) prueban que:
“‘K g(t,x,z(t,x)) dt dx+“‘,‘, S, x,z,(1,x)) dt dx=

JI, gt.xZ@0) drdx+ [ 10,x,%,0,x)) dr d

Asi

S @)= E) =], gt,x,Z(t.x) dr dx+ [, 7" Go@x) diody+

+ '['[N f({’ X, Ei ([,,\')) dt dx
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<[], g@.xZ(x) dede+ [[, h7(Z, (1,x)) di dx+

+J‘I/\: -f(tﬁ'x)i:[(tax)) df (I’,\‘, Y = =V

<| f}\’ g(t,x,z(t,x)) dt dx+ ”A h(z,.(tx)) dt dx+

[ Sz ) dids, ¥ Eel

Lo que prueba que z es solucién de (P)).

Sif(t, x,.)y g(t x, -)son no crecientes para c.t.p. (¢, x) en X, la obscrvacion
5.2, implica que:
(,x)2z(,x), (1,x)ekX.

Entonces se verifican (5.10) y (5.11). Repitiendo el mismo argumento anterior

se llega a la misma conclusion (5.12) y (5.13). Esto nos hace completar la
demostracién del teorema.

Observacion 5.9. La hipotesis de monotonia, en gencral, no puede ser
eliminada. Para ver csto basta estudiar la siguicnte funcional integral:

_[(; J: ]z(/,x)‘2 dt dx-!-jo1 J;il —(z, (1, X)) dt dx.

Definiendo la sucesion z; para i =1, ..., 2% dada por:

e X Si 22 St 2=l
2!

2 hx)=90 33 T 5
———— | f— X, I 3 o
il 24 2 )

N

{
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El grafico para k = 1, 2, 3, se presenta a continuacion.

Figura 1. k=1; i=1.
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015
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Figura 2. k=2;i=1, 2.
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Figura 3. k=3;i=1, 2, 3, 4.
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Motivados por el deseo de obtener un resultado de existencia en un caso mas
general, es que consideramos ahora z e R

En particular, consideramos la funcion /i: B" — R, que verifica:

MEY=2T h, (&), donde &=(&',.., &,

Nuestro problema sera ahora:
mi z
:1617{1 J5(2) (P)

donde

Jo(2) =[], &lt,x2(6,x)) dr d+ | [, Z h, (2] (t,x)) dr dx.
J=1

En este caso debemos observar que si z, Ze B, se dice que z<7Z si
z/<z/, ¥V j=1,..,n. Entonces, una funciéon g se dice no decreciente (o no

creciente) si V z, z' tal que z<:z' se tiene que g(z)< g(z") (0 g(2) = g(z").

1/ p

e , bl nole (P
Para p fijo, si & e A" entonces ]g}p {Zm]g } :
Si z e L” (R, R"), entonces

lop
. n ; p p }I,‘/)
zj, & Z J’J‘H z ({,x)‘ dt dx = .”K ]z(r,.\')’p dt dx
=l

Consideremos entonces
Hipotesis (H2)

Sea gt N x R— R tal que:
(g1) ges L x B (£ -medible.
(g2) =z g(t,x,z(1,x)) es s.c.i. para c.t.p. (1, x) € X.

(g3) =z g(t,x,z(1,x)) es monodtona c.t.p. (1, x) € A.

(g4) F ¢, 20 tal que g1, x, 2) Z—C'|’Z‘Z —ki(t,x), k e L (K)
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Sea h: R — R tal que:
(hy) hyessci Vji=1, ..., n

(ha) 3¢, >0 talque h (&)2c,

E" —ky, kel

Ademas, se asume que:

-2 77 [b—d]” > 0. (5.15)
CH

Teorema 5.10. Sean g v h que satisfacen las hipotesis (H2). Si.Ja(z) toma
un valor finito para algun =z € Z, entonces (P>) admite al menos una solucion.

Demostracion:

El razonamiento cs analogo a la demostracién anterior, para cada componente
Jj=1,..., n0

Observacion 5.11. Si a la funcional J; agregamos un término de la forma
f I;\’ f(t, x, z, (t, X)) dt dx, podemos obtener otro resultado de existencia similar al
Teorema 5.9, bajo la hipotesis adicional que tanto f como g secan mondtonas en el
mismo sentido, ademas se modificar la condicion (5.15).
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Control de estructuras
limeales bajo excitaciomes
siSmicas

Fidel Jara Huanca*

Descripeion
o Edificios altos bajo excitaciones sismicas son sujetas a deformaciones

grandes y aceleraciones de los pisos. Control de mecanismos reducen tales
respuestas.

o Algoritmos instantineos de lazos-cerrados son implementados para la
simulacion del control activo de modelos mateméticos de amortiguamiento
de masa regulada.

Modelamiento
MX + Cx + Kx =f(r)
—Cl + Cz - C2 ]
Al —Ccy Cytey —¢
M = ' ., C= ,
m, —Chpy tC —C,
- C” C."

(*) Universidad Nacional de Ingenieria, Casilla 1301 Lima - Pert - e-mail: fide@fc-uni.edu.pe



CONTROL DE ESTRUCTURAS LINEALES BAJO EXCITACIONES SISMICAS

ko + ks ks

—kn—l +kn =k

n

m, ¢, k, masa interna, amortiguamiento y rigidez del j-th piso

f(t) = u(t) + w(¢) = control + vectores de carga

Modelo activo de amortiguamiento de masa regulada
(ATMD)

L._..r_..a mn ;
/ /
mN‘l ! mpq /
ot r-b-s = — g
o— —,——J ;—[—-l
X1 / Xi ’
m T S S
oL ] :_r_.l e ] c-b7)
, /
m2 l/’ m2 L//
v (S| CZT:J <~ _ ") C“_,_ij
/ /
ml /’ m| //
= SRS M s S
_/.......l [ - —,--..l
7 7/
rrrrrry, reyrrrrrSrry
- Ks %9
—*-
—o k% kx-e—-‘ m
& CX C X <o—

. ey m
W

Figura 1: Figura del ATMD.
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x = desplazamiento relativo, H = localizaciéon de matriz de control u(s),
f() = Hu() = Mv X, (1) —s X, (r)

X, = aceleracion en la base.
s =col [Bi,... ], B =amortiguamiento externo del j-th piso
col {1, 1, ... 1]

<
Il

Modelo active de tendon

R b5
B,

Z
fz, 3 oty
mZ,

N -~ mJ Sf"l zJ

2N 5 \“‘%-1 '\ 1
. Zj-14
xS

Figura 2: Figura dei modelo de Tendon.

f(r)= hu,()-MvX, () sX, (1)

us = fuerza activa.
h =10,0,...,-1, 1] = localizacion del vector de control u,

s = col [Bi,... B 0]

my+1 N+ = iy (masa del absorvedor regulado).
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Control optimo

J =Jrof [ZTQZ 4 uTRu]df, funcién de costo
z=col [\x], u’ =-G,x-G,x
Q=Q">0,R=R" >0
u(f)=—%R"B/l(t)

B = col [O—M"H]

A(!) es el multiplicador de Lagrange del Hamiltoniano asociado, dependiendo de
M, C, Q, Ry H, donde A es asociado con un sistema de control de lazo-cerrado
y la excitacion es un ruido blanco, puede ser obtenido a través de la ecuacion de
Ricatti, debido a que es proporcional a la variable de estado z.

Algoritmo de control instantaneo

El intervalo de tiempo de excitacidon sismica no se conoce a priori, se sugiere
considerar la minimizacién de la funcion de costo

J()= 2" Qz + u” Ru

para cada de tiempo del intervalo generado.

Decoplamos la ecuacion dinamica para aproximar la respucsta homogénca y
libre, luego vamos a las coordenadas originales

2(1) = Td(t — M) + 9‘21 [Bu(r)+w, X, (1)
donde

d(t — At) =e™'T™! {z(i - Al + %’- Bu(r— Aty +w, X, (z)]

con A matriz espectral dada y T la matriz modal.

La minimizacion instantanea de la funcion de costo nos da

2Qz(1) + A1) = 0,
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2Ru(r)~%3u(z) =

con z definido anteriormente. Esto da la siguiente aproximacion

2(1)= 1+[%]~ BR'B'Q {Td(r—A/)-k(%)wl/i}g(f)}

Simulaciones

La teoria dada en la controlabilidad optima basada sobre la ecuacién de primer-
orden, es transferido ahora para la ecuacion dindmica original de segundo-orden.
Esto es obtenido para modificar:

M,¥+Cx+K,x=f ()

con K=K+ HG,, C; = C+ HG; incluyendo en los casos de masa regulada
activa de tendon.
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Fabricacion y
caracterizacion estructural
del Sﬁ@XNy

A. Lopez y W. Estrada(*)

RESUMEN

El presente trabajo reporta los parametros de fabricacién por rociado
pirolitico y la caracterizacion estructural de los oxidos nitrurados de silicio
Se presentan los resultados del proceso de fabricacion en Jorma de peliculas

delgadas mediante la técnica del rociado pirolitico TRP, en los cuales se ha
puesto mucho cuidado en manipular los parametros mas criticos hasta
determinar los mas dptimos. Acerca de la caracterizacion se describe los
resultados obtenidos mediante las técnicas de: Difraccion de rayvos X, XRD,
Espectroscopia Infraroja por Transformadas de Fourier  FTIR,

Microscopia de luz MO, Microscopia Electronica de Barrido SEM.
Microscopia Electronica de Transmision ~ TEM, Microscopia Electronica de
Transmision de  Ultra Alta Resolucion UHRTEM = Se analiza v se discuten

los resultados experimentales detallando el proceso de Jabricacion optimo
para la preparacion de las peliculas, mediante la determinacion de los
parametros de fabricacion, y en la parte de la caracterizacion
microestructural y morfolégica se aplican las técnicas de caracterizacion
mencionadas resultando que el material es basicamente amorfo y con muy
pequeiios precipitados cristalinos que avudo a la caracterizacion por medio de
la difraccion electronica y la UHRTEM.

() Facultad de Ciencias Universidad Nacional de Ingenieria. Lima.



FABRICACION Y CARACTERIZACION ESTRUCTURAL DEL SiO,N,

Introduccion

La literatura cientifica es abundante en relacion a las propiedades Opticas,
eléctricas y estructurales del 6xido nitrurado de silicio cuyas aplicaciones son cada
vez mas importantes [1, 2, 3, 4]; sin embargo la fabricacion de estos materiales
mediante la técnica del rociado pirolitico TRP [5,6,7] atn no ha sido ampliamente
explorado, motivo por el cual hemos realizado el presente trabajo, considerando la
simplicidad y el bajo costo de esta técnica.

La tecnologia de peliculas o recubrimientos delgados tienen una amplia
difusion dada las enormes ventajas que poseen los materiales en esta forma. asi como
sus multiples aplicaciones; recubrimientos especulares de los resonadores LASER,
dispositivos microelectronicos, conversion fotovoltaica de radiacion solar, pasivantes
de la corrosion, superconductores de alta temperatura, catalizadores, ceramicos para
grandes esfuerzos, dispositivos y materiales biomédicos, superficies selectivas.
sensores de gas, electrodos para sistemas foto-electroquimicos, transductores,
materiales piezoeléctricos, pantallas fluorescentes de activacion electronica, guias
de onda, luminiscencia, etc.

Para la fabricacion de las peliculas delgadas de oxido nitrurado de silicio sc
usan varias técnicas, como por ejemplo «reactive sputtering» [8], evaporacion [9].
rociado pirolitico [10], etc. Los métodos basados en técnicas de vacio son
ampliamente usados para producir peliculas de buena calidad, pero ¢l rociado
pirolitico ha resultado ser una técnica alternativa muy apropiada dada su simplicidad,
bajo costo y la posibilidad de fabricar con ella dreas extensas.

En general el proceso de obtenciéon de recubrimientos por TRP pucde
realizarse en forma directa o indirecta, dependiendo de la forma de transportar dc
las gotas pulverizadas hacia el substrato donde crecera el material.

En el caso de pulverizacion directa no hay seleccion de las gotas de rocio,
todos caen al substrato. Las gotas son aceleradas hacia abajo, debido a la presion
del gas portador y al efecto de la gravedad.

En el caso de pulverizacion indirecta se¢ hace una scleccion de las gotas de
rocio, de acuerdo a su velocidad y tamario; esto es posible hacerlo cuando las gotas
ascienden arrastrados por el flujo de gas portador llegando solo las mds finas a la
superficic del substrato. Las gotas mayores de cierto tamano critico vuclven a la
solucion residual por accion de la gravedad.

El esquema presentado en la fig.1 corresponde al sistema de pulverizacion
indirecta que se empled para obtener las peliculas de SiO\N,, en estc trabajo; los
detalles estan descritos en las referencias [11, 6].
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Figura 1. Esquema del sistema de rociado pirolitico indirecto empleado para la fabricacion de
peliculas delgadas de SiOxN,

Los parametros importantes a controlar para obtener peliculas de buena calidad
son: Temperatura del substrato (Ts), concentracion de la solucion (M), acidez de
la solucion (pH), tipo de solvente utilizado (generalmente agua o alcohol), caudal
de la solucion (Qs), presion de aire (P), caudal de aire (Qa), distancia entre el
pulverizador, geometria de la boquilla de la tobera y el substrato, tamano y
uniformidad de las gotas de rocio, el tiempo de rociado y el de tratamiento térmico.
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Una de las aplicaciones importantes del SiON, es la de emisor sclectivo en
sistemas de enfriamiento pasivo. Para ello un material necesita tener una alta
emisividad (teoricamente 100 %) en el rango de la ventana atmosf{érica (8 - 13 um)
y una alta reflectancia en cualquier otra region. En proporciones adecuadas el SiO\N,
puede acercarse bastante a este comportamiento.

En los procesos de enfriamiento pasivo por radiacion hay que aislar ¢l
dispositivo enfriador de los efectos de la conveccion y la transmision de calor
proveniente del medio ambiente. Esta propiedad enfriadora es posible solo si se
dispone de cielo claro, pues este radia a muy bajas temperaturas y el recubrimiento
puesto frente a €l busca el equilibrio térmico logrando con cllo enfriarse en algunos
casos hasta 25 °C debajo de la temperatura ambiental nocturna, y 10°C debajo de
la temperatura ambiental diurna[13, 1]. Esta propiedad enfriadora del cielo claro
es conocido desde hace mucho tiempo, pues en muchos casos es la causante de las
frias “heladas™ que destruyen los cultivos.

Se ha comprobado que la radiacion atmosférica ticne un comportamicnto cuyo
maximo de emision coincide con la del cuerpo negro radiando a 50°C; ¢l rango cn
la cual se encuentra este maximo de radiacion es entre 8§ y 13 micrones de longitud
de onda, al disefiarse los enfriadores radiativos se optimizan centrando ¢l pico de
la radiacion en este mismo rango

i
s Rixs

Er
/Y , 1 /\ Film emisor 7]
rl |7N i w 1 V /\ V {\ | Al
// o '\\Am

Figura 2. La idea bésica para obtener una alta reflectancia es usar una superficie metalica
muy pulimentada tal como el aluminio, y cubriendo esta con un emisor selectivo como el
SiO«N, en el rango entre 8 y13 mm. Eligiendo un espesor apropiado de la pelicula se puede
maximizar la emision de modo que cubra enteramente el rango de la ventana atmosferica.
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Para el mejoramiento del rendimiento como dispositivo emisor en condiciones
ambientales se emplea una cubierta de polietileno la cual tiene una gran transparencia
en el espectro visible y en la ventana atmosférica, lo cual permite aislar al dispositivo
de los efectos de la conveccion y transmision del calor ambiental, pero a la vez dejar
pasar la radiacion IR en el rango de la ventana atmosférica proveniente del substrato.

Fabricacion

Los substratos que en el presente trabajo se han utilizado fueron laminas
portaobjetos para microscopios de luz; estas se lavaron con agua y detergente y
luego se sometié a una fuerte vibracion ultrasénica en una cubeta con agua destilada
(cubeta ultrasonica Cole Parmer 8850) por 10 minutos, el secado de la misma se
efectud en una estufa. Tambien se utilizaron substratos de aluminio pulido.

Las peliculas no dopadas fueron obtenidas a partir de soluciones saturadas
de acido silicico en medio amoniacal con tiempos de rociado de 30' seguidos por
un tratamiento térmico de 30'. La tabla 1 muestra las condiciones para tres
concentraciones diferentes.

Las peliculas que mostraron mejores adherencias son aquellas obtenidas con
una concentracion de 0.05 M.

Conc. M. g/mol Etapas Tiempo(min) Temp (°C)
0,025 Spray 30 130
T. Térmico 30' 150
0,015 Spray 30 130
T. Térmico 30 50
0,050 Spray 30 130
T. Térmico 30 350

Tabla 1. Variacion de los parametros de concentracion y temperatura de tratamiento térmico
para obtener una mejor adherencia de la pelicula.

La figura 3 muestra la secuencia empleada en la preparacion de la solucion
amoniacal silicica, para la obtencion del SiOyNy.
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Acido silicico hidratado
SiOz X HzO

(1) Disolucion en 100 ml de NH;OH al 25 %

(2) Agitacion

CSolucién amoniacal silicica)

Figura 3. Secuencia de preparacion para el rociado pirolitico.

La preparacion de soluciones para obtener peliculas dopadas con nitrogeno.
requiere la adicion de la sal de nitrato de amonio. como paso adicional
correspondiente a la preparacion de soluciones de peliculas de oxido de silicio.

Los resultados de las pruebas experimentales mostraron que las mejores
adherencias entre pelicula-substrato se obtuvieron para porcentajes de 2.5% de
nitrato de amonio bajo la condicion de 0,050 de acido silicico (ver tabla 1)

La tabla 2 muestra las condiciones para la fabricacion de 17 tipos diferentes
de muestras.

Nro. | Codigo Spray Descomp. del | Tratamiento | Concent. | Dopante
temp (°C)/ SiO;xH,0 térmico Normal % de
tiempo (min) temp(°C)/ temp(°C) NHsNO;
tiempo (min) | tiempo(min)

01 E2 130 - 18 -- -- 0.01 -
02 E3 130 - 30 - -- 0.01 --
03 E4

04 E7

05 E8 130 - 40 150 - 30 -- 0.025 -
06 E9 130 - 40 150 - 5 -- 0.025 --
07 EI0 130 - 40 150 - 0 -- 0.025 --
08 El4 130 - 20 150 - 5 350 - 40 0.025 --
09 El6 130 - 40 150 - 0 350 - 30 0.015 --
10 EI8 130 - 40 150 - 0 350 - 30 0.05 -
11 F9 130 - 9 150 - 0 210 - 60 0.05 2.3
12 F10 130 - 9 150 - 0 200 - 30 0,05 1.5
13 Fll 130 - 10 -- 170 - 30 0.05 2.
14 F12 130 - 10 150 - 0 200 - 30

15 F13 130 - 5 150 - 0 320 - 25 0.01 --
16 Fl41 130 - 10 150 - 0 350 - 30 0,01 --
17 Fl4 130 - 5 150 - 0 350 - 30 0,01 --

Tabla 2. Relacion de muestras caracteristicas preparadas con diferentes paramelros
(la temperatura de descomposicién del reactivo es de 150°C)
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Caracterizacion: Resultados experimentales

Para los analisis por Difraccion de Rayos X se ha utilizado un difractémetro
Siemens D-500, Kristalloflex con fuente de Cu Ka (A=1,5406 A) con dngulo de
rastreo 20 variable entre 20 y 1107 se usé un patrén de SiO; para la calibracion
del instrumento de precisiéon. La reproductibilidad obtenida para 26 es +-0,0005°.
las distancias interplanares ¢ intensidades son obtenidas usando en programa
DIFFRACT AT (Siemens), Los resultados de rayos X muestran una estructura
amorfa o eventualmente nanoestructurado; no indica picos de difraccion.

Los espectros infrarrojos se obtuvieron en un espectrofotometro por
transformada de Fourier marca Nicolet modelo 550 con accesorio ATR 592.
Los espectros de transmision IR fueron corregidos por software, con el objetivo de
referirlos a una linea base y poder eliminar los efectos de interferencias debido al
espesor de la pelicula de SiO«N;,

Alrededor de 2350 cm! se observa un pico que sistematicamente se acopla
en todos los espectros, tal pico corresponde al CO;, atmos{érico.
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Figura 4. Espectro FTIR de la muestra E9, se aprecia la presencia de los enlaces de. HSi-
OSiz 640 bending en el plano, Si-Hz 700 rocking, (SiHz), 845 bending (SiHz), Si-O-Si

1050,1080 stretching asimetrico TO, H.O 1620 deformacion.

El microscopio ORTHOLUX [l.Leitz Wtzlar Germany emplcado para cste
trabajo puede iluminar a las muestras en los modos de transmision o de reflexion,
en los diversos analisis realizados se han empleado las tecnicas de Imagen de
Transmision de Campo Claro BFT, de Campo Oblicuo TFT y de Campo Oscuro
DFT, ast como las imagenes de reflexion de Campo Claro BFR.
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Figura 5. Micrografias de luz  A) de la muestra E16. Por medio del campo oscuro
observamos una granularidad fina homogénea y rastros superficiales de una intensa
deformacion plastica. Podemos observar también abundancia de poros muy finos y sin
conexion entre ellos, asi como esporadicos granos medianos de 2 mm. B) muestra F13 por
campo oscuro se observan anillos de bordes muy densos.

Los tamarfios de granos observados por el analisis mediante microsocopia de
luz lo podemos preciar en forma resumida en el cuadro de datos 3.

Muestra Conglomerado (um) Grano fino (nm) Aspecto
E2 19 1000
E4 10 1000
E8 1000 Sup. homogénea
El4 30yS5
E16 40y 20 1000
E18 50y 10 2000
F9 23
F19 20 1000 y 500
F113 30

Tabla 3. Resumen de los datos correspondiente a los tamarios de conglomerados y granos
obtenidos por microscopia de luz

Los analisis por SEM de las peliculas delgadas de SiO\N, han sido efectuadas

. con un SEM Hitachi S-500. Las muestras han sido preparadas mediante una

cobertura delgada de oro por medio del dispositivo cobertor por Sputtering marca

Electron Microscopy Sciences Mod EM 550 de la Fac. de ciencias de la UNL
Operando a 20 mA, 7x10-2 mbar y por espacio de 2 minutos.
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_Sum] |

Figura 6. Micrografias SEM A) muestra E2, se observa una superficie irregular compuesto de
conglomerados de 4um los mismos que se encuentran tapizados por una granulidad fina. B)
muestra E14, se observa una estructura micro dendritica con intersticios vacios regularmente

dispuestos y ocupando un 40% del volumen total.

Los resultados obtenidos mediante el microscopio electronico de barrido se
han resumido en la tabla 4, en donde incluso podemos apreciar para algunos casos
los tamarios de los poros.

Muestra Conglomerado (um) Grano fino (nm) Diam. De poro (nm)
E2 5 200 100
E4 20 100
B 20 1000
ES 3 10
E14 5 10
El6 20
E18 1000
F9 15y3
F10 50
F12 12 100
F13 50 500
Fl4 1000 1000

Tabla 4. Resumen de los datos correspondiente a los tamarios de conglomerados y granos
finos obtenidos por microscopia electronica de barrido.
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A continuacién se presentan los resultados obtenidos con respecto a las
caracteristicas morfoldgicas granulares y cristalinas de la muestra; este analisis fue
efectuado con el MET JEOL 100 CX del Instituto de Fisica de la UNAM DF

Muestra Conglomerado (pm) Grano fino (nm) Diam. De poro (nm)
E2 100 20, 10,2, 1
E3 1000, 100, 50
E4 50 15
E7 20 3
ES 100 15
E9 7
E10 200 70 10
F9 100 10
Fll 100
Fi2 5a20 um
FI3 400
Fl141 40 2

Tabla 5. Resumen de los datos correspondientes a los tamarfios de granos finos, y granos

ultrafinos obtenidos por microscopia electronica de transmision TEM.
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Figura 7. A) muestra E7 se revela la presencia de dos fases, una de granulildad fina de 5 nm
con poblacién diferenciada por zona y otra fase de naturaleza granular mas densa y
aparentemente producida por proceso de coalescencia. B) difractograma que nos muestra

presencia cristalina.
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La tabla 6 mucstra los datos referentes a los materiales que han sido analizados
por difraccion electronica, se debe mencionar que la presencia de estos cristales en
forma de precipitados es en muy pequenas cantidades. Para la calibracion de la
longitud de camara se ha usado oro segun el procedimiento indicado en la referencia

[12].

SizNy

Silicon Nitrade ficha JCPDS 40 1129

Sys. Tetragonal

a, = 9,245 A = b, co = 8,482 A

. ik
hkl dh“A
18(3371) E18(3373) F141(3354)
200 4.68 - - -
002 4,28 - - -
102 3,83 3,80 « - -
220 3.32 3,38 - -
301 2.89 2.89 - -
20 2.57 - 2.64 -
302 2,51 - - 2.49
400 232 - - -
411 2,16 - - 2.14
420 2,07 197 - -
501 1.80 - 1,86 -
413 1,75 173 - -
530 1,59 - 1.60 -
600 1,54 - 1,52 152
424 1.48 - - -
216 1.43 1.45 - -
006 1.41 - - -
603 1.35 1,32 1,30 1.31
701 1,187 - 1,18 -
711 1,16 1,17 - -
721 1,08 1,12 1,07 1.08
614 0,998 - - 1,00
713 0.97 0,98 - 0,96
800 0,91 0,92 0.92 -
830 0,89 0,89 - -
118 0.88 0,86 0,88 0.88
841 0,84 - 0.83 0.83
0,79 0,76

Tabla 6. Cuadro comparativo de las distancias interplanares obtenidos por difraccion electrdonica
de las muestras E18 y F141 con respecto a los datos JCPDS del SizNg
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En el presente trabajo tambien se utilizé el Microscopio Electronico de Ultra
Alta Resolucién (UHRTEM) JEOL 4000EX de 400 kV del IFUNAM, las
nanografias respectivas nos han reportado apreciable informacion, por cjemplo, se
observa que los frentes de crecimiento se ven obstaculizados por la presencia de
otros atomos o por las vacancias dando origen a los maclados.
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Figura 8. A) muestra F13 se observa que una frontera de grano ha servido como nucleo de
cristalizacion, pueden apreciarse embriones cristalinos en forma de satelites, la esquina granular
de 90° sugiere una estructura cubica. B) se observa un proceso de cambio de direccion en el

frente de crecimiento, originado por la presencia de una vacancia.

d(A) B SizNy Si3Ny NH,NO; Si,ON; Si;N,0
Hexag. Tetrag. Orthor. Orthor. Orthor.

6,94 - - - . -
2,73 : - 221 200 020 -
2,66 101 - - ; -
2,595 . 320 - - 310
2,353 11 400 032 201 021
2,163 201 411 - 112 112
1,73 301 413 332 132 312
ao (A) 7604 9245 7,8984 549 8.84
bo (A) . . 8,002 8,87 547
co (A) 2,907 8,482 8,002 4,84 4,83
ficha 33-1160 40-1129 43-1431 33-1162 18-1171

Tabla 7. Se muestran los indices de Miller de las distancias interplanares de los materiales indicados
y que tienen coincidencia con las distancias experimentales obtenidas de la muestra E3.

71



REVISTA DE CIENCIAS - UNI

Discusion y conclusiones

Las peliculas de oxido y oxinitruro de silicio fueron obtenidas por la técnica
de rociado pirolitico 0 pulverizacion reactiva en fase de vapor. El caracter. rugoso
de los recubrimientos no permitieron medir el espesor de las peliculas.

Los mejores resultados se obtuvieron fabricando los recubrimientos en dos
etapas: La primera consistia en rociar la solucion sobre el substrato a temperaturas
entre 130 y 150 °C, y una segunda con un tratamiento térmico que permite la probable
sinterizacion de los granos cristalinos mejorando con ello la adherencia pelicula-
substrato.

Una concentracion de 0,05 M de SiO;.xH>0O en solucidn amoniacal, con
tiempos de 30 minutos en cada una de las etapas, han dado buenos recubrimientos.
concentraciones superiores a 0,1 M no favorecen al proceso de rociado.

La soluciones de acido silicico en un medio amoniacal son suficientes para
obtener peliculas de oxinitruro de silicio; la adicion de nitrato reduce los picos
caracteristicos de la absortancia en la banda de 13 a 15 micrones, por lo que resultaron
inadecuados para usarlos como dopantes.

La adicion de un dopante como el nitrato de amonio NH4NO3, proporcionan
peliculas con buena adherencia, pero los excesos de este influyen negativamente
en la adherencia de la pelicula.

Por FTIR encontramos la notoria presencia del enlace Si-O-Si ‘stretching’.
entre los 1050 y 1080 cm™  seguido en abundancia del HSi-OSi; ‘bending’ a 640
cm”! y en menor cantidad los enlaces Si-H; ‘rocking’ a 700 cm!, en todos los casos
hay un pico de H20 a 1620 cm', las muestras que tienen menor transmitancia cn
la ventana atmosférica son el F141, E13, E9 y el E3; no se hace notoria por
esta técnica de la presencia del N.

Por Microscopia de Luz se observa que en la mayoria de las muestras hay
rastros de una fuerte deformacion plastica, las cuales probablemente han sido
originadas al frotarlas con papel al hacerles la prueba de adherencia; se observa que
el diametro de los conglomerados varia entre 10 y 50 pum, estos probablemente han
sido originado por las gotas del rocio y han solidificado concentrandose en la
periferia de la superficie de contacto por posible efectos de la tension superficial
y de la microconveccion interna de cada gota. Por la técnica de iluminacion por
transmision inclinada (TFT) se observa que el crecimiento laminar es irregular
mostrandose zonas a diferentes alturas y de textura superficial suave; los granos
pequenos que tapizan la lamina tienen tamanos promedios de 1 um.
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Por SEM se observan estructuras con deformacion plastica dando un aspecto
de rayas finas, tambien podemos apreciar granos medianos cuyos diametros varian
entre 5 y 50 pum, mientras que la granulidad fina tienen tamarios entre 10 y 1000
nm. Algunas muestras tienen una superficie de textura porosa. cuyos diametros de
poros miden entre 100 y 1000 nm

Se pueden observar estadios avanzados de un proceso de sinterizacion
originados por el tratamiento térmico, en algunos casos se ven claramente los cuellos
de union de los granos, mientras que en otros se nota un proceso de fusion bastante
avanzado, por lo que llegan a mostrar texturas superficial muy compactas y de muy
baja superficie efectiva. En ningun caso se observaron indicios de estructuras
cristalinas.

Por TEM se observan particulas muy pequenas que las hemos catalogado
como grano fino, estos tienen un tamano que varia entre 5 y 400 nm, ademas sc
nota una textura ultra fina que se resuelven entre 1 y 15 nm; también se observan
porosidades cuyos diametros de poro varian entre 10 y 100 nm; Por la difraccion
de electrones se nota una abundante fase amorfa y una pobre presencia cristalina.
Los patrones de difraccion dificilmente logrados para algunas muestras han reportado
los siguientes resultados:

Las muestras E18 y F14] han mostrado indicios de la presencia del Nitrato
de silicio SizNy; las muestras E16, E18 y F11 muestran la presencia de la cristobalita
SiO;.

Por UHRTEM  se ha estudiado solamente la muestra E3, por ser csta
la unica muestra que ha posibilitado la observacion de una fase muy temprana de
crecimiento cristalino, la hace en forma de precipitados y se pucden apreciar algunas
formas muy tempranas del nucleamiento cristalino al cual hemos llamado embriones
cristalinos. Hemos podido tambien apreciar una forma de nacimiento de macla por
la interposicion de una vacancia delante del frente de crecimiento cristalino. Il
analisis de las distancias interplanares estimadas de las nanografias respectivas nos
ha arrojado un margen de posibilidades bastante amplio. Sin embargo la mayor
distancia interplanar medida en la muestra tienc 6,94 A que coincide muy
ajustadamente con el parametro b, = 6,9236 A del Oxido de Silicio SiO3
(cristobalita) tal como se puede deducir de la ficha JCPDS 39-1425.

En conclusion podemos decir que por medio de las diferentes técnicas de
analisis microestructural que se han usado en el presente trabajo, el SiIOxNy pirolitico
es un material de muy baja cristalinidad por lo tanto de muy dificil caracterizacion
estructural. Los datos mas importantes s¢ han logrado determimar por FTIR, por
medio de la cual observamos que la muestra F141 tiene un comportamiento
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interesante y potencialmente utiles para aplicaciones en refrigeracion pasiva; por
difraccion electronica, se han obtenido datos de mediana fiabilidad debido a lo
dificultoso que resultaron registrar los patrones de difraccion; por UHRTEM se
han observado procesos interesantes acerca de la formacion cristalina en una fase
muy temprana de su desarrollo y han dado motivo de investigaciones de naturaleza
cristalografica. Se ha podido apreciar algunos mecanismos que originan la formacion
de los cristales, gracias a la escasa o primitiva cristalinidad. Aparentemente la energia
de formacion cristalina es muy alta de modo que en el proceso de solidificacion
por saturacion de soluciones salinas (sobre saturadas) no alcanzan a organizarse, a
esto se suma el efecto de la temperatura, pudiendo haber sido que el tratamlento
térmico haya promovido la formacién de estos embriones.

Se puede notar la presencia de los datomos precursores del embrién y la
aparicion de frentes de crecimiento de naturaleza circular, y los atomos extrafios que
causan los defectos durante el crecimiento. El tipo de crecimiento laminar viene
precedido de conformaciones en forma de lenteja o de almohada dependiendo de
las estructuras cristalinas.

En resumen diremos que:

Los Oxinitruros de Silicio comprenden un gran variedad de materiales cuyas
o

propiedades varian ampliamente, dependiendo de las condiciones de preparacion vy

de la estequiometria principalmente.

La composicion de las peliculas influyen fuertemente en las propiedades
microestructurales y opticas; se ha observado que la muestra que mejor absorcion
tiene en la ventana atmosférica corresponde a F141 cuyos parametros optimos son:

Reactivos y concentracion M de las soluciones : SiO2 x HO  0.05M

Presion Py caudal de aire  Qa: 310 kPa , 12 I/min

Caudal de la solucion Qs: 0,25 ml/s

Tiempo del rociado piroltico  tr: 10 minutos

Temperatura del substrato Ts: 130 ° C

Temperatura del tratamiento térmico  Tt: 350 °C

Tiecmpo del tratamiento térmico tt: 30 minutos

Periodo del equipo de rociado P: 2s

Distancia entre ¢l pulverizador y cl substrato D: 10 mm

Dopante : Ninguno
Microestructura

Cristalinidad:

Muy baja.
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Precipitados:
E18 y F141 Nitrato de silicio Si3Njy

E16, E18 y FI1 cristobalita SiO;
E18 y F12 Nitrato de Amonio NH4NOj (sistema tetragonal),
F12 Nitrato de Amonio NH4NOj (sistema cubico).
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ostabilidad de fluidos emn
rotacion

Armando Bernui y Edgard Vidalon (*)

RESUMEN

Se sabe que las estrellas se forman a partir de las nubes de gas y polvo
presentes en las galaxias, por accion de la gravedad esta materia se condensa
liberando energia v elevando la temperatura de la nueva estrella hasta que se
estabiliza. El objetivo de este trabajo es entender el mecanismo de evolucion
de dichas nubes que habrian generado estrellas como nuestro sol dando lucgo

origen a sistemas planetarios. Por ello estudiamos aqui el movimiento v la
estabilidad de un fluido, de densidad constante v forma elipsoidal, que rota
alrededor de su eje de simetria [1 - 3].

Introduccion

Para estudiar la estabilidad de un fluido en rotacién alrededor de su eje de
simetria consideraremos las ecuaciones viriales del sistema. Estas ecuaciones
generalizan las ecuaciones de movimiento de un fluido en funcion de los tensorcs
de inercia, del potencial gravitatorio, de la energia cinética, etc. Aqui analizaremos
las condiciones de equilibrio de dicho fluido y las consecuencias obtenidas al
perturbarlo.

(*) Facultad de Ciencias Universidad Nacional de Ingenieria, Apartado 31 - 139, Lima 31.



REVISTA DE CIENCIAS - UNI

Definicion.- Sea un fluido de masa M sometido a sus fuerzas de gravitacion
y que ocupa un volumen V. En general la densidad p y la presion p son funciones
de X y de f, sin embargo aqui asumiremos

p = p(3), (1
p=p(¥). (2)

Definimos el momento de distribucion de p como el tensor de segundo orden

I E.L,p(f)xrxjdvg (3)
el momento de presién como
I1= L p(Eav, (4)
el potencial gravitatorio como
o [ PGV
¢(x)=G W (5)

el tensor de segundo orden del potencial gravitatorio como

PG, = X, = x))

;=G |, B—r ar (6)
V Ix _ x!
y el tensor de energia cinética como
I :
TU.EEJ.V pu;u; dv’, (7)

donde # es la velocidad de un diferencial de fluido localizado en el punto P.

Ecuacion virial de 2do. orden

Las ecuaciones viriales de un sistema son ecuaciones de evoluciéon donde los
términos son integrales de volumen de las diferentes variables fisicas del sistema,
y por esto son las ecuaciones apropiadas para el estudio de la dindamica de fluidos

[1, 2].
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La aplicacion de la 2da. ley de Newton a un diferencial de fluido, usando
un sistema de referencia inercial es

p(3,0) illfi =-Vp(F.0)+ p(X,0)VD. (8)
dt

La aplicacion del siguiente teorema
dQ(x,1)

_Elz

dl’ (9)

/ B ~ —
;}[ i p(¥) O(F,0) dV = [ p(F)

donde Q (¥, ) es una propiedad cualquiera del fluido (por ecjemplo p. p. muy. ctc.).
nos conduce a la ecuacidon Virial de 2do. orden [1]

d i
— | pujx,dv =21, +5, [T+, (10)

con i,j=1,2,3. Sin embargo nos conviene expresar estas ccuaciones referidas
a un sistema de referencia no inercial solidario con el fluido y que gire con velocidad
angular constante wp respecto a un sistema de referencia inercial. Sean {A}, X2, A3
los cjes de este sistema, en tal caso sobre cada clemento del fluido tendremos ademas
los términos debido a las aceleraciones centripeta y de Coriolis:

= 2(@y x 1) dm =@y x (@0 *xX) dm. (1)

Considerando estos términos la ecuacion virial de 2do. orden sc transforma

en
d CdV = 2 Iii 3 ] 5
o LpU X =2T,}+(I)U+w(, IJ-AZ_:]w'wA iy ¥ 0y |
3
+2/ZI G 1@, J‘r pu x, dv. ‘ (12)

Pequeiias perturbaciones de un fluide en rotacion

Analizemos ahora como reacciona nuestro fluido de forma elipsoidal, que gira
a una velocidad angular @& , a perturbaciones externas que actuen sobre ¢l. Sca
0, (%,1) la funcion que describe cualquier propiedad del fluido no perturbado, siendo
V el volumen ocupado por este; y sea Q(¥,¢) el valor de dicha funcion cuando cl
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fluido ya fue perturbado, siendo entonces ¥V +VF el valor del volumen
ocupado.

Sea ¢ el desplazamiento de un diferencial del fluido ubicado inicialmente

en el punto P(X, X5, X3). Se toma este £ como funcién de ¥ y de ¢, es decir

£ (X, 1). Luego se define la variacion de la integral [1] j O, (X,1)dV por

60= [, ., O(X1)dV - [ Oy(%.t)av. (13)

Usando esta definicion se calcula la variacion de cada término de la ecuacion (12).

Los elipsoides de MacLaurin

Veamos el caso particular de un fluido en rotacion que forma un elipsoide
de revolucion con semiejes a; = aq, a2 = ag, a3 < ag y que gira junto con los nuevos
ejes {X1, X2, X3}. Tanto el eje de simetria del elipsoide como el vector velocidad

angular ¢ coinciden con el eje X3. En tal caso 7=0, 0, =w, =0, W =w,.

Asi, la ecuacion (12) se transforma en:

(D’I +CO02(IIJ T3 Jj)— 51/1_[’ (]4)

de aqui:

De la teoria de potencial gravitatorio [1] tenemos:

D, ==24, I; mGp, (16)
donde
x du
A =ala —; 17
¢ 3J0 Ala,” +u) (17
y
Ma}s,
]!-iz_
5

A= \/((102 +u)2(a32 +u).
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Reemplazando (15) en (14) tendremos:

) Ay as”
a)o“=27er[A, - az_, }

g

Integrando(17), y usando (16) obtenemos de la ultima relacion

(3-2e>Wi—-e? arcsin(e) 3(1-e?) ”
3 - ) ° ( L)
o C)'

w,” =21 G p
(&

donde e= \/1 — (a; /a(,)2 es la excentricidad del elipsoide. La ecuacion (18) nos
da la condicion de MacLaurin para el equilibrio hidrostdtico con densidad constante.

Se observa que , es una funcion de e.

Ahora consideremos la perturbacion del fluido aplicando el operador o
-definido en (13)- a ambos lados de la ecuacion (12). Llevando a cabo los calculos
correspondientes encontramos que

5
({-I/ 3 @8,

(1[2’.‘/ :5(])’/ a)g (I/,/ “6’31/3J)+ 811 5I—I+ 20)0 Z 6113 J-l p_('bf_ '\../ (/I/. (19)
/=1 :
donde
v, = L, pe,x ,dV, (20)
Vu =0 IU. (21)

Ahora asumismos que el desplazamicnto de cualquicr clemento de fluido es
la forma

E(E,0) = e E(F). (22)
Luego la ecuacion (19) se convierte en

3
MV, =80, 05V, =5,V;,)+6,8] ]+ 20, /}j € |, Py AV (23)
-l
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Dando valores a i, j encontramos dos grupos de ecuaciones:

KViyo= 80y, (24)
AV, = 8Dy, - (25)
AV =200V, = 8Py +alV,,, (26)
2Vi3 42200 Vs = Sy +wl Yy, (27)
MPVyy = 8Dy + 8], (28)
MV, =220V = 8D, + 0V, +8]], (29)
WPVys 2000 V5 = 8Dy, + 0l Vay + 5] (30)
MVa =240, Ve, = 8D, + 0l Yy, (31)
MVy +220, V= 8D, + @l V. (32)

Del grupo de ecuaciones (25), (26). (27) y (28) se obtiene una ecuacion
algebraica de tercer orden para la variable cuyas soluciones son:

c = wy=0y, (32)
| _
o = 3 [a)o +\/(o§ +16Byt G p |= 0y, (34)
J
1 3 1
G = E[mo—\/(oa +16B;,nGp |=0ps, (35)
donde A
2 o 9} ” Il
B, =a;a; | (36)

A(a!,2 + 11)(af + 1) .

Las frecuencias o7y, o, o7y definen los Modos Transversales; como dichas
cantidades son numeros reales las oscilaciones resultantes son estables a la
perturbacion (véase la ecuacion (22)). De las ecuaciones (29), (30) y (31) se obtiene
otra ecuacion de segundo orden para o, que al resolverse nos da

612

o= l =0
| a3 " (37)
2 @
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5

4By + 0_37(6333 —4B83)
72

g =- Esz,

0

2 38
1, a5 (32)
2

los cuales definen los modos pulsantes de vibracion. Como estas cantidades son
reales (se puede mostrar que B33 > B)3), entonces estos modos producen oscilaciones
estables del sistema (i.e. el fluido elipsoidal).

Finalmente de las ecuaciones (30), (31), (32), (33) obtenemos otra ecuacion
algebraica, esta vez de segundo orden para la variable o, al resolverla obtenemos

o—=coo+\/4B,,7er—a)§ =07, (39)

O'=COO—\/4BHJTG/)—(1)02EO'T“,Z. (40)

que definen los modos toroidales de vibracion.

En el calculo de estos modos fue utilizado el siguiente teorema de la tcoria
del potencial gravitatorio:

3
§b, =7 G pl:w 2BV, +4a;§, ZI Ay Vy } (41)

El modo toroidal, que es el mas interesante, genera tres casos:

Caso @, <4m G p B), .- En tal caso la frecuencia de vibracion es un numero real
y el movimiento subsecuente del sistema es estable.

Caso cug >47 G p B,,.- En este caso podemos analizar

JEDE4n G p By, +0d) = iol 47 G p B, (42)

de modo que de la ecuacion (40)

Gr=w0—1'\/(uoz—47erB”. (43)

Sea a= \/(oo2 —4r G p B, >0 luego G,y =@, =i ¢ es un numero complejo.

89



REVISTA DE CIENCIAS - UNI

Como fue definidode A =0 i= A =w,i+a. Entonces se observa que en este caso

(22) se transforma en

(X, )= e E(X). (44)

Esta ecuacion pone de manifiesto que a medida que aumenta el tiempo 7 el
valor de &(x,r) también crece indefinidamente ocasionando que el desplazamiento

de un elemento diferencial del fluido se aleje del centro de masa. En otras palabras
el clipsoide de fluido pierde materia. Es decir, el sistema es inestable bajo
perturbaciones que conduzcan a los modos toroidales de vibracion. En un préximo
articulo aplicaremos estos resultados al estudio de la formacion del sistema solar.

2 . . ..
Caso @, =47GpB,, .- En este caso la frecuencia de vibracion o es un punto de

inestabilidad dinamica que corresponde a un valor critico de la excentricidad
inestable.
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Cstudios fotoelectroquimicos
de recubrimientos delgados
de oxido de titamio

Monica Marcela Gomez Leon (*)

RESUMEN

El presente trabajo trata sobre la preparacion y caracterizacion de
recubrimientos delgados de oxido de titanio para su aplicacion en celdas
solares sensibilizadas con colorante, por lo cual la caracterizacion a la que se
le dara mas énfasis es la fotorespuesta de las peliculas o lo que se denominara
IPCE (que proviene del nombre en ingles, Incident photon-to-current efficiency)
que es un parametro que mide la eficiencia del sistema para convertir en
corriente eléctrica un foton incidente de una determinada longitud de onda.
Las peliculas fueron obtenidas por la técnica denomina en inglés «sputtering»
que consiste en el deposito de materiales a partir de “targets™ o blancos que
son bombardeados para que el material de estos sea expulsado y
posteriormente depositado en los sustratos deseados. En este trabajo se
empleo una plancha de vidrio recubierta de oxido de estaiio dopado con Flior,
de una resistencia de 8 V/n de apariencia lechosa a la vista. Las peliculas
Sfueron obtenidas modificando la temperatura del sustrato que origino diferentes
Jases del oxido de titanio y el tiempo de crecimiento, que genero peliculas con
diferentes espesores.

Las peliculas presentaron una rugosidad muy grande que posibilité una gran
adherencia del colorante, que a su vez se reflejo en un valor de IPCE de mas
del 40% en el rango visible (520 nm). Estos valores obtenidos son
promisorios, por lo cual la continuidad del estudio para optimizar este

material se presenta como una opcion de gran interes cientifico y tecnologico.

(") Facultad de Ciencias, Universidad Nacional de Ingenieria, Lima, Casilla postal 31- 139,
Lima-Perd.
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Introduccion

Las celdas solares basadas en procesos fotoelectroquimicos fueron reconocidas
como sistemas de energia solar importantes desde 1970 [1] a partir de lo cual se
realizaron muchos estudios para entender el mecanismo de funcionamiento de estas
celdas [2,3]. Una contribucién importante, en ese camino, presenta la posibilidad
de «sensibilizar» la pelicula con un compuesto que permita absorber la mayor parte
de la radiacion solar. Debido a que dicha radiacion se encuentra basicamente en
el rango visible los compuestos usados para el proceso de sensibilizacion presentan
color, por lo que son denominados «colorantes». Dichos compuestos pueden ser
absorbidos en la superficie del semiconductor. Pero se encontrd que la eficiencia
cuantica de este tipo de electrodos aumenta la absorcion solar en sélo 1 a 2% ya
que la presencia del colorante sobre la pelicula es de s6lo una monocapa en una
superficie homogénea.

Matsumura et al. [4] realizan un notable progreso cuando preparan el primer
electrodo con una superficie interna muy grande. Esto gener6 una fuerte corriente
de investigacion que dio como resultado celdas solares con 10% de eficiencia [5,6],
que las hace competitivas con las desarrolladas usando la tecnologia de estado sélido.
Este tipo de celda solar sensibilizada con colorante esta constituida por particulas
pequenas del orden de nandmetros que conforman una red porosa que asegura el
contacto eléctrico entre dichas particulas que se encuentran depositadas formando
un recubrimiento poroso sobre un sustrato conductor. Los fundamentos de la
estabilidad de este tipo de celda aun no se entienden y actualmente una gran cantidad
de trabajos estd siendo realizados para conseguir controlar los parametros que
garanticen una alta eficiencia y durabilidad de las celdas solares sensibilizadas [7-
11]. La técnica empleada para la preparacion de dichos recubrimientos
“nanoestructurados” es la denominada sol-gel, pero esta técnica presenta
inconvenientes en la reproducibilidad del material y la adherencia de este. Por otro
lado la técnica DC “sputtering” con magnetron es de particular importancia porque
permite la preparacidn en gran escala de peliculas delgadas [12,13], ademas permite
controlar adecuadamente los pardmetros de crecimiento de los recubrimientos, lo cual
facilita la reproducibilidad del material obtenido. En el presente trabajo se utilizo
para la preparacion de los recubrimientos de 6xido de titanio la técnica de DC
“sputtering” reactivo con magnetron.

Celdas solares sensibilizadas con colorante

Una celda solar sensibilizada con colorante esta compuesta de tres
componentes basicos: un material semiconductor nanoestructurado, el electrolito
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y el contra electrodo. El colorante (generalmente un compuesto de ligantes organicos
enlazados a un metal de transicion) se absorbe sobre toda la superficie activa de
la pelicula, y el electrolito penetra a través del sistema nanoestructurado de la pelicula
hasta alcanzar el contacto eléctrico posterior.

Cuando el sistema absorbe luz pueden ocurrir dos efectos: (1) los electrones
del semiconductor son excitados de la banda de valencia a la banda de conduccion.
generando pares electron-hueco y (2) las moléculas del colorante se excitan
produciendo la inyeccidn de electrones a la banda de conduccion del semiconductor.
En el contraelectrodo los electrones son transferidos a las especies redox del
electrolito y estas moléculas redox pueden difundirse en el electrolito hasta oxidar
las moléculas del colorante y los electrones regresan al semiconductor completandose
de esta manera el ciclo que hace de este sistema reversible.

Preparacion de las peliculas

Las peliculas de 6xido de titanio fueron depositadas por un sistema de DC
“sputtering” reactivo con magnetron. El equipo usado fue un sistema Balzers UTT
400 [14]. Antes de iniciar el proceso de “sputtering” la camara se llevo a una presion
de ~10°7 Torr, por medio de bombas turbo moleculares. Luego se introdujo una
mezcla de Ar y O> en una proporcion controlada (I') de Oy/Ar hasta una presion
total de ~12 mTorr. El sistema estaba provisto de 4 posiciones para ubicar los
materiales-blanco de geometria circular plana. Los materiales-blancos fueron platos
de Ti (99.9%) de 5 cm de diametro ubicados a 13 c¢m del sustrato e inclinados 35°
con respecto al plano horizontal. Las polaridades de los magnetos fueron N-S-N.
La temperatura del sustrato se increment6 por medio de una resistencia y se controlo
a un valor t;. Para conseguir la uniformidad en las peliculas se roto el sustrato durante
su crecimiento.

Caracterizacion estructural de las peliculas

En este trabajo las medidas de rayos X fueron realizadas en un difractometro
Siemens D5000 con un dnodo de Cu, se empled el montaje de incidencia rasante.
Para identificar los picos del 6xido de Ti se usaron los valores estandares para el
TiO, [15] y la ecuacion de Scherrer se empled para determinar el tamafio de grano
cristalino.

La figura 1 muestra los difractogramas de rayos X de incidencia rasante para
peliculas de oxido de Ti depositadas por “sputtering” sobre SnO»:F a diferentes
temperaturas (t5). El espesor de todas las peliculas fue de ~260 nm.
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No se presentan picos de difraccion provenientes del 6xido de Ti para peliculas
depositas a temperatura ambiente y 100°C. Sin embargo fijando la temperatura del
sustrato a 200°C, la reflexion (101) de la anatasa se hace visible a un valor de 20
= 25.3° Para un valor de 1, = 250°C se obtiene una clara evidencia de contar con
una mezcla de las fases anatasa y rutilo.

Aplicando la ecuacion de Scherrer [16] a la reflexion de la anatasa (101) para
la pelicula depositada a 1, = 200°C se encontrd un tamano de grano aproximado
de ~10 nm, mientras que para la pelicula depositada 1, = 250°C el tamano de grano
obtenido de la misma reflexion fue de ~30 nm. Los valores obtenidos de las
reflexiones (110) y (101) del rutilo dieron ~8 nm.

. SnO_:F
| AQ101) SnO,:F 2

R(110)

250°C R(101)

|
} \ 150°C
- j\\ 100°C
-
[ TA.

L

N 1 e 1
24 26 28 30 32 34 36
Angulo de difraccion, 26 (grad.)

Intensidad (unids. arbitrarias)

Figura 1. Difractograma de rayos X de peliculas de 6xido de Ti depositadas sobre sustratos
de vidrio recubiertos con SnO2:F. Durante el depdsito de la pelicula el sustrato se mantuvo a
temperatura ambiente (T.A.) y a tres temperaturas elevadas que estan indicadas en la figura.

Los picos de difraccion son asignados a las reflexiones de la anatasa (A) y del rutilo (R).

Eficiencia de la conversion foton-incidente-corriente

Para medir la fotorespuesta se calculo la “eficiencia en la conversion foton-
incidente-corriente” (el término “IPCE” viene de la expresion inglesa “incident
photon-to-current conversion efficiency”) [17]. Esta medida se define como el
numero de electrones generados en el circuito, por numero de fotones
(monocromaticos) incidentes en el sistema. Para calcular el IPCE se empled la
expresion 1 que esta normalizada con la carga unitaria e,

hei

ph
]
P (1)

IPCE =
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donde /i es la constante de Planck, ¢ la velocidad de la luz en el vacio, i,, y P son
la fotocorriente y la potencia de la radiacion incidente por unidad de area
respectivamente, y A es la longitud de onda de la luz incidente. La informacién
correspondiente a los fotones que inciden en el sistema esta dada por los valores
de 1, ¢, Py A. Y la correspondiente informacion de los electrones que se generan
esta dada por el valor i,,. De esta expresion se obtiene un valor igual o menor a
la unidad, y que generalmente se expresa en porcentaje.

Al grafico que presenta el valor del IPCE como una funcion de la longitud
de onda de la luz incidente se le denomina “espectro de accion de la fotocorriente™.

Las medidas de IPCE fueron realizadas usando celdas de dos y tres electrodos.
Los datos espectrales fueron registrados punto por punto, para longitudes de onda
tomadas aleatoriamente para asi evitar errores sistematicos durante la medida.

No se realizaron correcciones por la absorcion y reflexion del sustrato. La
luz provino de una lampara de Xe de 450 W de potencia cuyo haz paso a través
de un filtro de agua de 80 mm de longitud, luego por un monocromador (Schoeffel
GM 252), después fue focalizado por un sistema de lentes de cuarzo, y finalmente
el haz fue dividido en dos: una parte (fraccion pequefia) fue direccionada hacia un
fotodetector para calibrar la intensidad y la parte restante (fraccion mayoritaria) fuc
dirigida hacia la muestra.

El sistema fue calibrado usando un potenciometro optico (Photodyne Modelo

44XL) con un sensor radiométrico constituido por un fotodiodo de silicio (Modelo
400 AS).

—_
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5 & 2
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Iluminacion WE RE CE =
{ || frontal R 5z
\ :_lo
3 5. ™~
R llummgcxon nl
L[ )] posterior Fotadiodo
o®
C—==p——t——ol{_| ¥
R4
_(- — oo
5 . (=) °o
Lampara Filtro Lente Lente =2
Xenon  deagua Monocromador 4
Envase de teflon con cubierta negra

Camara oscura

Figura 2. Montaje experimental para las medidas de IPCE en una celda de tres electrodos.
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Las medidas de tres electrodos se realizaron sobre muestras no sensibilizadas
(sin colorante) en un sistema como el mostrado en la Fig. 2 [18]. La pelicula de
oxido de Ti fue ubicada como electrodo de trabajo y como contraelectrodo se colocd
una red de Pt encapsulado en un tubo de vidrio que tenia en un extremo vidrio fritado;
como referencia se uso un electrodo de calomel saturado. Las medidas se realizaron
con un potenciostato Princeton Modelo 173. El electrolito utilizado fue KI 0.1M
en agua purgada con nitrogeno. EIl pH se mantuvo a 6.6 por medio de un buffer
de fosfato de potasio 0.02 M. EI espectro fue registrado en el rango ultravioleta
entre 280 < A < 400 nm. Al empezar cada medida el electrodo de trabajo fue
conectado a 0.3 V y se espero hasta alcanzar el menor valor de la corriente oscura.

Las medidas de dos electrodos se realizaron en una celda tipo laminar
conformada por la pelicula de 6xido de Ti sensibilizada (con colorante), una placa
de Pt, y entre ellos el electrolito constituido por una solucion de 0.5M Lil / 0.05M
I, en acetonitrilo. La sensibilizacion de la pelicula se realizo con una solucidn
etanolica de cis-tiocinato-N-bis(2,2'-bipiridil-4,4'-acido dicarboxilico) rutenio II (ver
figura 3). La incorporacidn de este compuesto se consiguio mediante la adsorcion
del complejo sobre el 6xido de Ti. Para conseguir dicha adsorcién se introdujo la
pelicula en una solucion etandlica del colorante a 1x10-> M de concentracion. Antes
de la sensibilizacion, la pelicula se calento hasta 350°C durante 5 minutos, luego
se enfrio hasta 80°C, que fue la temperatura a la que se introdujo a la solucion para
permanecer alli durante un dia, el exceso del colorante fue removido con el
subsecuente lavado con etanol de la pelicula sensibilizada.

HOOC

Figura 3. Estructura quimica del cis-ditiocianato-bis (2,2"-bipiridil 4,4 dicarboxilato) rutenio I,
complejo usado como colorante en este trabajo.
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La influencia de la temperatura del sustrato se presenta en las figuras 4a y

4b que muestran los valores de IPCE correspondientes a la iluminacion frontal y

la iluminacidn posterior medidos en un sistema de tres electrodos, donde las peliculas

no fueron sensibilizadas con colorante. El espesor de todas las peliculas fue de ~260

nimn.
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Figura 4. Eficiencia de la conversion foton-incidente-corriente (IPCE) para (a)
la iluminacién frontal y (b) iluminacién posterior de peliculas de dxido de Ti depositas por
sputtering sobre laminas de vidrios precubiertas por SnOz:F.
Las peliculas han sido depositadas a las temperaturas que se muestran en la figura.
Las medidas se realizaron en un sistema de tres electrodos en un electrolito acuoso con

Kl al 0.1 M purgado con nitrégeno.
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Todos los espectros fueron registrados en el rango ultra violeta entre 280 <
A <400 nm. Los espectros obtenidos con la iluminacion frontal y con iluminacién
posterior presentan caracteristicas comunes; asi tenemos que la fotorespuesta es
mayor a medida que la temperatura del sustrato durante la preparacion de la pelicula
aumenta. El espectro correspondiente a la pelicula depositada a t, = 250°C alcanza
una fotorespuesta maxima de 11% a A = 300 nm, mientras que el valor obtenido
para la pelicula depositada a t; = 100°C alcanza sélo un 1%.

Los espectros correspondientes a la iluminacion posterior presentan la
absorcion caracteristica del sustrato.

La figura 5 presenta la fotorespuesta espectral de una serie de peliculas con
diferentes espesores. Estas medidas se realizaron en un sistema de dos electrodos
para el rango visible. Las curvas muestran perfiles similares y la tendencia es que
el aumento del valor de [PCE aumenta con el espesor de la pelicula. Los maximos
de los valores de la fotorespuesta para todas las peliculas se encuentran a ~530 nm.

50
/Q Espesor de la pelicula (um):
U\U Sy - - U\O\EI —— 19
0. e A—
J\A\A‘ AAD O, oo r—42
- 302\0\ o0 A O - —0— 6.7
é) 25 i O ~O- O/Q/ 0 A
X 20} 0
ISt RN
10
st A
of ﬁ)

5
400 450 500 550 600 650 700 750 800
Longitud de onda (nm)

Figura 5. Eficiencia de la conversion fotdn-incidente-corriente (IPCE) para peliculas de 6xido de
Ti con diferentes espesores. Los puntos representan los datos y las lineas se han trazado

como guia visual.

La figura 6 ilustra los valores de IPCE para 4 = 530 nm. La eficiencia aumenta
proporcionalmente con el aumento del espesor, a pesar que se presenta una ligera
saturacion en la pelicula mas gruesa.
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Figura 6. Valores de IPCE para una longitud de onda de 530 nm para peliculas de oxido de
Ti con diferentes espesores. Los puntos representan los datos obtenidos y la linea se ha

trazado como guia visual.

Conclusiones

Del comportamiento que presentaron las peliculas debido a la influencia de
la temperatura, se obtuvo el valor de 11% como la méxima fotorespuesta (iluminacion
frontal) para la pelicula depositada a 250°C para un A = 300 nm. Para valores
menores de temperatura, el valor del IPCE disminuy¢ sistematicamente.

Debido a la gran rugosidad superficial de estas peliculas fuc posible
sensibilizarlas con el colorante: cis-tiocinato-N-bis(2,2'-bipiridil-4.4"-acido
dicarboxilico) rutenio I1. En estas peliculas la eficiencia de conversion fotovoltaica
presentd una variacién monotdnica con el espesor (a mayor espesor mayor valor de
IPCE), pero alguna saturacion se presento para espesores mayorcs a 7 pum. La
pelicula més gruesa presenté una fotorespuesta mayor al 40% a una longitud de onda
~ 330 nm.

Las celdas solares preparadas por “sputtering” aun no compiten con la
eficiencia que presentan las celdas preparadas basandose en nanoparticulas usando
los métodos convencionales, pero la facilidad que brinda la técnica de sputtering
de controlar la microestructura de los recubrimicntos y ademas su probada viabilidad
en la industria, hacen de gran interés esta técnica para su empleo en las celdas solares
sensibilizadas con colorante.
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De Newton a Schrodinger

H. G. Valqui (*)

RESUMEN

Corrientemente se considera que el teorema de Ehrenfest es la unica conexion
entre la ecuacion de Schrodinger y la Segunda Ley de Newton. En el
presente articulo muestro que anadiendo una ‘pequeiia’ (v adecuada)

perturbacion a la ecuacion de la Segunda Ley, ¢sta se convierte en una
ecuacion equivalente a la de Schrodimger
En un proximo articulo se analizaran algunas de las consecuencias de tal
perturbacion desde el punto de vista nestoniano.

ABSTRACT

Usually one thinks there is no connection between the Second Newton's Law
and the Schrodinger equation other than the Ehrenfest's Theorem. In his
article it is shown that a ‘verv little perturbation’ of the Second Law opens
the way to arrive at the Schrodinger equation.

In a paper to follow some of the consequences of such perturbation will be
analysed from the classical point of view.

(*) Facultad de Ciencias Universidad Nacional de Ingenieria, Apartado 31 - 139, Lima 31,
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01:  En importantes situaciones fisicas, las fuerzas que alli existen son derivadas
de un campo de potencial, V(x,t). Por una parte, la Segunda Ley de Newton, SLN,
permite hallar todas las posibles trayectorias que realizaria el Sistema Fisico en
cuestion, y todos los valores de las magnitudes fisicas caracteristicas.

Por otra parte, la ecuacion de Schrédinger no proporciona trayectorias, pero
si los posibles valores de las magnitudes fisicas, incluyendo las posiciones.

Lo anterior sugiere convertir la funcion momentum, p(t) = mv(t), en un cierto
campo fisico (es decir, en una funcién dependiente de la posicion y del tiempo).
Para ello, siguiendo lo usual en la mecanica variacional, supondremos la existencia
de un campo fisico,

3 S(x,t) tal que P(x,t)=VS(x,t) [01]

donde, tratdndose de trayectorias de particulas o cuerpos, P = m-dx/dt, es el
momentum clasico.

02. La Segunda Ley de Newton
dp/dt = -VV [02]

toma en este caso la forma

%OVP+6P+VV=O , donde azaat
o también
/m-PoVP+6P+VV =0
es decir,
(1/2m) V(P)? + 0P +VV =0 (03]
o también,
(1/2m) V(VS)? + 8VS+VV =0

es decir,

v|(1/2m)vs)2 + v +as|=0
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La anterior expresion entre corchetes es independiente de la posicion; solo

puede ser una funcion del tiempo. Haciendo (1/2m)(VS)* + V+38S =dg/dt , y
redefiniendo S(x,t) como S(x, t) + g(t), la ecuacion anterior adquiere la forma

(1/2m)(VS)* +V+85=0 [04]

donde reconocemos a la ecuaciéon de Hamilton-Jacobi, la misma que usualmente es
obtenida por medio del Célculo de Variaciones.

03: Laecuacion de Schrodinger es una ecuacion diferencial lineal; la de Hamilton-
Jacobi no lo es; debido al sumado en (VS)2. En un articulo anterior!" se hizo notar
que dicho término cuadratico aparece en la identidad

V2 (%) =[a? - (VS)? + aV?2s] e*®

donde el coeficiente ha sido colocado preventivamente.

S

Entonces, multiplicando la ecuacién de H-J por la funcion e*>, ella se

transforma en:

1/2mal)(V? e“S)+ V e + (1/a)d e —1/2ma)(V3S) e*® =0 [5]

04: Si hacemos ¢ =i/h, W(x,t)seas("") , entonces la expresion [05] toma la

forma:

—(h?/2m)V3y + Vy + (Wi)dy —h /2mi)V2S)y =0 [06]
Y
donde, en los tres primeros sumando podemos reconocer a los de la ecuacion de
Schrédinger:
—(h?/2m)V?y + Vy + (Wi)dy =0 [07]

05:  Es decir, partiendo de SLN, [02], hemos llegado a la ccuacion de Schrodinger
modificada por un término adicional.

06: A continuacion procederemos en sentido contrario: Partiremos de la ecuacion
de Schrodinger [07], para obtener la SLN, claro esta, una Segunda Ley modificada
por algtn término adicional.
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h/1 S(x,t)

Reemplazando w(x,t)=e en [07], obtenemos

— (b2 /2m)[-1/h?% - (VS)? +i/h - V28] ™S + v ™S 4 (hi)g ¢S =,

es decir,

[(I/Zm)-(VS)2 +h /(2mi)-v28] eMS oy oS +(89) e/MS _

o también

[(1/2m)-(VS)?2 +h/(2mi)-V?S] +V +8S =0

o, finalmente,

(1/2m) (VS)2 +V +8S+h/(2mi)(V?S) =0 [08]

que es la ecuacion de Hamilton-Jacobi Perturbada, HJP.()

07: La perturbacion es causada por el ‘pequefio’ término h/(2mi)- (st) , donde,

desde el punto de vista clasico se cumple que h = 0.

Aqui debemos remarcar que, mientras en la ecuacion de H-J el campo S (x,t)
podia ser considerado real, esto ya no es posible en la ecuacion ‘perturbada’, donde
dicho campo resulta necesariamente complejo.

08: Tomando la gradiente de [08] obtenemos
(1/m)(VS) e V(VS)+ VV + VS + V[h/(2mi) (V3S)]=0

y, considerando que VS =P, de donde (1/m) VS = P/m = dx/dt, la ecuacion anterior
se transforma en

dx/dt o V(VS) + 8VS+ VV + h/(2mi)V(V2S) = 0,
es decir, ‘
d/dt(VS) + VV +[h/(2mi) V*(VS)=0,
o también

dP/dt +h/(2mi) V*(P)=-VV (09]

que es lo que Ilamaremos la Segunda Ley de Newton Perturbada.
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CONCLUSION

Considerando que la SLN es valida tanto para un campo de potencial V(x,t),
como para un campo fisico S(x,t) tal que P =VS, entonces es posible perturbar

aquella ecuacion, anadiéndole un ‘pequeio’ sumando, h/(2mi) '\72(1’), obteniendo
asi la ecuacion de Newton perturbada [09].

Esta ecuacion de Newton perturbada es equivalente a la ecuacion de
Schrédinger.

Es necesario tener presente que en la SLN el campo S(x,t) debe ser real para
que el momentum P resulte real. En la ecuacion perturbada [09], va esto no es
posible; en ella tanto S como P son funciones complejas, donde la funcion de estado

Vo= e"™S resultante es tal que el operador h/iV, tiene justamente como valor propio

al momentum; es decir h/iVy =Py .

También debe notarse que la ecuacidon de Schrodinger, en su forma [08], sc
transforma en la ecuacion de Newton cuando h = 0, lo cual justifica el hecho de
considerar que el segundo sumando del primer miembro de [08] 0 de [09], ¢s una
‘pequena’ perturbacion.

[En un proximo articulo se aplicard la ecuacion de Schrodinger, en su forma
de la ecuacion de Newton perturbada, a algunos casos especificos, con el objeto de
apreciar, desde la perspectiva newtoniana, algunos de los efectos de dicha
perturbacion].
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