State of the art of DSRW test equipment subjected to side loads and equipment proposal for static testing at natural scale

  • Gram Rivas GERDIS Researcher, Pontifica Universidad Católica del Perú,Lima, Peru
  • Elliot Quispe GERDIS Researcher, Pontifical Catholic University of Peru. Lima, Peru
  • Sandra Santa Cruz Departamento de Ingeniería Civil, Pontificia Universidad Católica del Perú, Lima, Perú
Palabras clave: DSRW, Experimental test, Full scale tests, Lateral force, Tilt table

Resumen

Dry Stone retaining walls, DSRW, are low-cost traditional structures made of stones aimed to stabilize, support backfill and avoid soil erosion. They have massively been used as foundation of dwellings by vulnerable population located in the steeped hills surrounding some Latin-American cities. These walls are built following ancient techniques that are neither well studied nor formally established. Millions of people live in these conditions in seismic zones generating a high-risk situation. Experimental and numerical studies are needed in order to evaluate the reliability of low-cost DSRW and to validate or improve traditional techniques. The objective of this ongoing research is to design and construct a full-scale testing equipment to assess DSRW performance against lateral out-of-plane seismic forces. The methodology consists in the following steps: (1) Review of state-of-art of experimental testing of DSRW, (2) Analysis of failure modes of similar constructions (3) Conceptual and structural design of optimum full-scale testing equipment, (4) Construction planning (blueprints and budget) and (5) Construction and operation. Testing equipment found in technical literature can be classified into two groups according to the applied force: dynamic and static. Forces in dynamic tests are the result of acceleration imposed to the specimen, e.g. shaking tables and centrifuge machines. Forces in static testing are applied by hydrostatic pressure, lateral earth pressure, and specimen´s weight. Applied forces in dynamic tests simulate seismic forces well. On the other hand, it is a high cost solution and requires very specialized staff for operation and maintenance. Static alternatives are more affordable but seismic forces are roughly simulated by static forces. In this work a tilt table is proposed to test full-scale specimens. In this test, the specimen is built in a horizontal table that is slowly rotated.  In this way, a static out-of-plane force acts in each particle of the specimen. The magnitude of the total force is the specimen´s weight multiplied by the sin of the rotating angle. Static test results could be conservative but they could give a good approach to understand DSRW damage accumulation process and failure. Two equipments were proposed: (1) tilting table for monotonic static test and (2) tilting table for cylic test. We compare costs, required area, construction feasibility, and operation manageability. We conclude that both of them are straightforward solutions to assess DSRW performance against out-of-plane lateral forces.

Descargas

La descarga de datos todavía no está disponible.

Citas

[1] Tarabochia M 2016 Diario La República, 4 de marzo.
[2] Fukumoto Y, Yoshida J, Sakaguchi H and Murakami A 2014 The effects of block shape on the seismic behavior of dry-stone masonry retaining walls. Soils and Found, 1117-1126.
[3] Morris H and Brooking J. 2017 Out of plane adobe wall veneer performance from a novel quasi-static and dynamic tilt test. New Zealand Society for Earthquake Engineering.
[4] Salvador E 2006 Comportamiento sísmico de un módulo de adobe de dos pisos con refuerzo horizontal y confinamientos de concreto armado. Tesis para optar el título de ingeniero civil. Pontificia Universidad Católica del Perú. Lima.
[5] Blondet M, Villa G, Brzev S and Rubiños A 2011 Earthquake- Resistant Construction of Adobe Buildings: A Tutorial.
[6] Cartagena C and Ramírez C 2011 Diseño, modelamiento y simulación de una mesa sísmica unidireccional hidráulica. Universidad Industrial de Santander.
[7] Villemus B, Morel J and Boutin C 2007 Experimental assessment of dry stone retaining wall stability on a rigid foundation. Engineering Structures, Elsevier.
[8] Colas A, Morel J and Garnier, D 2008 Yield design of dry-stone masonry retaining structures: Comparisons with analytical, numerical and experimental data. Int. J. Numer. Anal. Methods Geomech. 32 (14) 1817-1832.
[9] Colas A, Morel J, Garnier D 2010a 2D modelling of a dry joint masonry wall retaining a pulverulent backfill. Int. J. Numer. Anal. Methods Geomech. 34(12), pp 1237-1249
[10] Colas A, Morel J, Garnier D (2010b). Full-scale field trials to assess dry-stone retaining wall stability. Engng Struct. 32 (5) pp 1215-1222
[11] Colas A, Morel J, Garnier, D 2013 Assessing the two-dimensional behaviour of drystone retaining walls by full-scale experiments and yield design simulation. Geotechnique.
[12] Díaz A 2016 Estudio de Procesos de Automatización y Georreferenciación de Elementos Urbanos en Cuatro Agrupaciones Familiares de La Quebrada “El Progreso” Carabayllo – Lima, Perú.
[13] Mundell C, McCombie P, Heath A, Harkness J and Walker P 2010 Behaviour of drystone retaining structures. Proc. Instn. Civ. Engrs Struct. Build. 163(1) pp 3-12
[14] Municipalidad Metropolitana de Lima-MML 2013 Guía para la habilitación urbana en asentamientos humanos y mitigación del riesgo. Lima, Perú
[15] Ceradini, V 1992 Modellazione e sperimentazione per lo studio della struttura muraria storica. Ph. D. Tesis en historia y teoría de estructuras, Universidad de Roma “La Sapienza”.
[16] Trujillo, L 2007 Estudio de bloques de yeso en mesa inclinable. Informe de investigación. Facultad de Ingeniería Civil, Universidad de Colima
[17] Rincón, R 2008 Estudio de muros de bloques de yeso en mesa inclinable. Informe de investigación. Facultad de Ingeniería Civil, Universidad de Colima
[18] Rivas G Y 2019 Diseño de equipo para ensayos de pircas ante cargas laterales estáticas. Tesis para optar el título de Magíster en Ingeniería Civil. Pontificia Universidad Católica del Perú. Lima
[19] Restrepo-Vélez, L and Magenes, G 2009 Static tests on dry stone masonry and evaluation of static collapse multipliers. Research Rep. ROSE 2009, pp 2-7
[20] Penzien J, Bouwkamp J, Cloug R and Rea D 1967 Feasibility study large-scale earthquake simulator facility. Earthquake Engineering Research Center. Department of General Services State of California. EEUU
[21] Valdez, R 2012 Modelos de Muros de bloques ante cargas laterales. Universidad de Colima
[22] Gutiérrez M and Núñez D 2013 Mejoramiento de la Tecnología para la Construcción y Sistema de Difusión de la Vivienda Social Sismo-Resistente -TAISHIN – FASE II, Universidad de El Salvador. El Salvador.
[23] Velazco, M 2016 Comportamiento de muros en ángulo de mampostería con junta seca ante cargas laterales. Universidad de Colima
[24] Ersubasi F and Korkmaz H 2010 Shaking table tests on strengthening of masonry structures against earthquake hazard. Natural Hazards and Earth System Sciences, 10, pp 1209-1220.
[25] Carrillo J, Bernal N and Porras P 2013 Evaluación del diseño de una pequeña mesa vibratoria para ensayos en ingeniería sismo-resistente
[26] Restrepo-Vélez, L 2004 Seismic risk of unreinforced masonry buildings. Tesis. European school for advanced studies in reduction of seismic risk-ROSE School, Universidad de Pavia
[27] Turer, A 2004 Seismic performance improvement of masonry houses using scrap tires. World Bank DM2003, SPIM-1451 Project, Final Report. Ankara, Turkey
[28] Zegarra L, Bartolomé A, Quiun D and García G 2000 Reinforcement of existing adobe houses, in: Aridland Newsletters, Desert Architecture for a New Millennium 47
[29] Clavijo J, Ramírez L 2001 Diseño, modelamiento y simulación de una mesa sísmica unidireccional hidráulica. Tesis para optar el título de ingeniería mecánico. Universidad Industrial de Santander. Colombia
[30] Grupo de Gestión de Riesgos de Desastres en Infraestructura Social y Vivienda de Bajo Costo-GERDIS 2018 Informe de caracterización de las propiedades físicas y mecánicas de pircas en una zona de laderas en el distrito de Carabayllo. Proyecto subvención Nº 109-2017-FONDECYT. Pontificia Universidad Católica del Perú-Lima
Publicado
2019-08-07
Cómo citar
Rivas, G., Quispe, E., & Santa Cruz, S. (2019). State of the art of DSRW test equipment subjected to side loads and equipment proposal for static testing at natural scale. TECNIA, 29(2). https://doi.org/10.21754/tecnia.v29i2.702
Sección
Experimental Techniques for Structures and Soil Problems