Modal identification methods on cable-stayed bridges case study: Rayitos de Sol Bridge


  • Julio Alfredo León Deza Facultad de Ingeniería Civil, Universidad Nacional de Ingeniería, Lima, Perú
  • Carlos Javier Melchor Placencia Facultad de Ingeniería Civil, Universidad Nacional de Ingeniería, Lima, Perú
  • Víctor Sánchez Moya Facultad de Ingeniería Civil, Universidad Nacional de Ingeniería, Lima, Perú


Palabras clave:

Análisis Modal experimental, Métodos de identificación Modal, Parámetros modales, Puente atirantado


The accurate estimation of the modal parameters of cable-stayed bridges plays a key role in the safety assessment of these structures under dynamic loads such as traffic, wind, and earthquakes. Furthermore, the difficulty to excite this type of structure makes ambient vibration measurements a meaningful source of information to validate the developed full three-dimensional finite element models used to assess the dynamic response of these types of bridges. ​In this paper, the Rayitos de Sol cable-stayed bridge was selected as a case study. To evaluate the modal parameters of the bridge, ambient vibration data was gathered from strategic points over the deck. Using the field-recorded data, a series of frequency and time domain system identification methods were carried out and then compared. The collected data was analyzed based on output-only identification methods: peak-picking, frequency domain decomposition, stochastic subspace identification, random decrement, and Ibrahim time domain identification. The purpose of performing different analyses is to examine the efficacy and limits of applicability of these techniques in addressing specific challenges involved in the modal identification of cable-staged bridges. To complement the ambient vibration data analysis, the validated finite element model of the bridge was subjected to artificial ambient excitations to make a comprehensive comparison of the identification methods. In the development of the numerical model, considering the effective stiffness of the concrete reinforced elements as well as modelling the right boundary conditions at the expansion joints were the main factors to achieve a good correlation with the measured modal parameters.


Los datos de descargas todavía no están disponibles.


[1] J. He y Z.-F. Fu, Modal Analysis, 1st ed. Butterwoth-Heinemann, Linacre House, Jordan Hill, Oxford, 2001.
[2] J. M. W. Brownjhon, P. Reynolds, S. K. Au, D. Hester y M. Bocian, “Experimental Modal Analysis of civil structures: State of the art”, in Proc. 7th Int. Conf. on Structural Health Monitoring of Intelligent Infrastructure SHMII 2015, Torino.
[3] R. J. Allemang y D. L. Brown, “Experimental Modal Analysis and Dynamic Component Synthesis”, Fly Dynamics Laboratory, Air Force Wright Aeronautical Laboratories, Final Technical Report, Ohio, 1987.
[4] S. Braun, D. J. Ewins y S. S. Ro, Encyclopedia of Vibration. 1st ed. Elsevier, Cornwall, UK, 2002.
[5] A. Cunha, E. Caetano, F. Magalhaes y C. Moutinho, “From Input-Output to Output-Only Modal Identification of Civil Engineering Structures”, SAMCO, Final Report, 2006.
[6] P. Gatti y V. Ferrari, Applied Structural and Mechanical Vibrations, 2º ed. E & FN Spon, USA, 2003.
[7] C. C. Chang, T. Y. P. Chang and Q. W. Zhang, “Ambient Vibration of Long-span Cable-Stayed Bridge”, J. Bridge Eng., vol. 6, Nº 1, pp. 46-53, 2001.
[8] W. X. Ren and X. L. Peng, “Baseline finite element modeling of a large span cable-stayed bridge through field ambient vibration tests”. J. compstruc, vol. 83, pp. 536-550, 2005.
[9] K. C. Lu, Y. Wang, J. P. Lynch, C. H. Loh, Y. J. Chen, P. Y. Lin and Z. K. Lee, “Ambient Vibration Study of the Gi-Lu Cable-Stay Bridge: Application of Wireless Sensing Units”. Proceedings of SPIE-Society of Photo-Optical Instrumentation Engineers, San Diego, California, April, 2006-
[10] A. Kamal, M. Rabei , A. El-Attar, M. Kunieda y H. Nakamura, “Ambient Vibration Test of Aswan Cable Stayed Bridge”, J. Appl. Mech., Vol. 9, 2006.
[11] A. Kibboua, M. N. Farsi, J. C. Chatelain, B. Guillier, H. Bechtoula and Y. Mehani. “Modal Analysis and ambient Vibration measurements on Mila-Algeria cable stayed bridge”. Structural Engineering and Mechanics, vol. 29, Nº. 2, pp. 171-186, 2008
[12] B. Peeters y C. E. Ventura, “Comparative study of modal analysis techniques for bridge dynamic characteristics”, Mech. Syst. Sig. Process., Vol. 17, Nº 5, pp. 965-988, 2003.
[13] R. Aguilar, “Dynamic Structural Identification using Wireless Sensor Networks”, Doctoral Thesis, Engineering School of the University of Minho, Portugal, 2010.
[14] R. W. Clough y J. Penzien, Dynamics of Structures, Third Edition, Computers & Structures, Inc, USA, 2003.
[15] A. K. Chopra, Dynamics of Structures, Fourth Edition, Pearson Education, One Lake Street, 2012.
[16] V. Zabel, “Operational modal analysis Theory and aspects of application in civil engineering”, Doctoral Thesis, Universidad Bauhaus de Weimar, 2018.
[17] R. E. D. Bishop y G. M. L. Gladwell, “An Investigation into the theory of Resonance Testing”, Philosophical Trans. Of the Royal Society of London, 225A (1055), pp. 241-280, 1963.
[18] R. Brincker, L. Zhang y P. Andersen, “Modal identification from Ambient Responses using Frequency Domain Decomposition”. International Modal Analysis Conference 18 (IMAC), Texas, USA, 2000.
[19] R. Brincker y L. Zhang, “Frequency Domain Decomposition Revisited”. 3rd International Operational Modal Analysis Conference (IOMAC), Portonovo, Italia, 2009.
[20] R. Brincker, C. Ventura y P. Andersen, “Damping Estimation by Frequency Domain Decomposition”, International Modal Analysis Conference 19 (IMAC), Kissimmee, USA, 2001.
[21] S. Dominguez, P. Campoy, J. M. Sebastian y A. Jimenez, Control en el Espacio de Estado, Segunda Edición, Pearson Educación, Madrid, 2006.
[22] B. Peeters y G. De Roeck, “Stochastic subspace system identification of a steel transmitter mast”, In Proceeding of IMAC 16, The International Modal Analysis Conference, pp. 130-136, 1998.
[23] B. Peeters, “System Identification and Damage Detection in Civil Engineering”, Doctoral Thesis, Catholic University Leuven, 2000.
[24] A. E. Castillo y R. L. Boroschek, Código Nº A14-11 Uso del Método de Frecuencia no Paramétrica y SSI para la Identificación de Propiedades Modales de Edificios, Congreso Chileno de Sismología e Ingeniería Antisísmica IX Jornadas, 2005.
[25] H. A. Cole, “On-The-Line Analysis of Random Vibrations”, AIAA/ASME 9º structures, structural dynamics and Materials Conference, California, AIAA Paper, Nº. 68-288, 1968.
[26] H. A. Cole, “On-Line Failure Detection and Damping Measurements of Aerospace Structures By Random Decrement Signature”. NASA CR-22205, 1973.
[27] S. R. Ibrahim, “Random Decrement Technique for Modal identification of Structures”, Journal of Spacecraft and Rocket, vol. 14, Nov., pp. 696-700, 1977.
[28] J. C. Aamussen, “Modal Analysis based on the Random Decrement Technique. Application to Civil Engineering Structures”, Ph.D. Thesis, Univ. Aalborg, Dinamarca, 1997.
[29] S. R. Ibrahim y E. C. Mikulcik, “A Method for the direct identification of Vibration Parameters from the Free Response”, The Shock and Vibration Bulletin 47, pp. 183-196, 1977.
[30] R. Brincker, P. Olsen, S. Amador, M. Juul, A. Malekjafarian y M. Ashory, “Modal participation in multiple input Ibrahim time domain identification”, Mathematics and Mechanics of Solids, vol. 24, Nº 1, pp. 168-180, 2019.
[31] A.Malekjafarian, R. Brincker, M. R. Ashory y M. M. Khatibi, “Modified Ibrahim Time Domain Method for Identification of Closely Spaced Modes: Experimental Results, In: Caicedo et al. (eds)Topics on the Dynamics of Civil Structures, Volume 1”. Conference Proceedings of the Society for Experimental Mechanics Series 26. Springer, New York, 2012.
[32] C. Liu y J. Teng, “Modal analysis of cable-stayed bridge model using a modified Ibrahim Time domain algorithm”, Journal of Vibroengineering, vol. 16, Nº 6, pp. 3033-3044, 2014.
[33] R. S. Pappa y S. R. Ibrahim, “A Parametric Study of the Ibrahim time domain Modal Identification Algorithm”, 1985.
[34] S. R. Ibrahim, “Time Domain Modal Parameter Identification and Modeling of Structures”, American Control Conference 1983, pp. 989-996, 1983.
[35] J. Leon Deza, C. Melchor Placencia, and V. Sanchez Moya, “Estudio del Fenomeno de Excitacion Sincronica Lateral caso: Puente Peatonal “Rayitos de Sol””, tecnia, vol.30, Nov., Nº 2, pp. 18-26, 2020.
[36] J. León, “Respuesta Dinámica de Puentes Peatonales en la dirección lateral frente a cargas Peatonales”, Thesis, National University of Engineering, Perú, 2018.




Cómo citar

J. A. León Deza, C. J. Melchor Placencia, y V. Sánchez Moya, «Modal identification methods on cable-stayed bridges case study: Rayitos de Sol Bridge», TEC, vol. 32, n.º 2, pp. 101–111, ago. 2022.



Procesamiento de Señales e Imágenes