Análisis del rendimiento térmico de un calentador solar de aire de convección natural con absorbente corrugado y lecho poroso

  • Jose Quiñonez Choquecota Departamento de Físico Matemáticas, Universidad Nacional del Altiplano, Av. Floral 1153, 21001 Puno, Perú
Palabras clave: abastecimiento de energía, balance energético, calefacción solar, transferencia de calor

Resumen

Se analiza el efecto del lecho poroso en un calentador solar de aire con placa absorbente corrugado en V y un diseño que facilita la libre convección, en términos de parámetros de rendimiento y eficiencia térmica. El colector se evaluó, con y sin lecho poroso, en condiciones climáticas similares al montar sobre una pared vertical. Los resultados revelaron que el flujo másico está directamente afectado con la temperatura ambiente. Se observó que el lecho poroso afecta la subcapa laminar de la placa absorbente generando mayor turbulencia que mejora la tasa de transferencia de calor, por tanto, el colector con lecho poroso presenta mayor temperatura en su interior y disminuye ligeramente su eficiencia. Además, el lecho poroso funciona como almacén de calor que reduce inestabilidades lo cual permite una temperatura de salida uniforme y permite aumentar el tiempo de funcionamiento. El colector es de bajo costo, es respetuoso con el medio ambiente y factible para calefacción de ambientes en zonas frígidas.

Descargas

La descarga de datos todavía no está disponible.

Citas

[1] S. Singh y P. Dhiman, "Thermal performance of double pass packed bed solar air heaters – A comprehensive review," Renewable and Sustainable Energy Reviews, vol. 53, pp. 1010-1031, 2016. doi: https://doi.org/10.1016/j.rser.2015.09.058.
[2] S. Chamoli, R. Chauhan, N. S. Thakur, y J. S. Saini, "A review of the performance of double pass solar air heater," Renewable and Sustainable Energy Reviews, vol. 16, no. 1, pp. 481-492, 2012. doi: https://doi.org/10.1016/j.rser.2011.08.012.
[3] F. K. Forson, M. A. A. Nazha, y H. Rajakaruna, "Experimental and simulation studies on a single pass, double duct solar air heater," Energy Conversion and Management, vol. 44, no. 8, pp. 1209–1227, 2003. doi: https://doi.org/10.1016/S0196-8904(02)00139-5.
[4] P. T. Saravanakumar, D. Somasundaram, y M. M. Matheswaran, "Thermal and thermo-hydraulic analysis of arc shaped rib roughened solar air heater integrated with fins and baffles," Solar Energy, vol. 180, pp. 360-371, 2019. doi: https://doi.org/10.1016/j.solener.2019.01.036.
[5] S. Singh, "Experimental and numerical investigations of a single and double pass porous serpentine wavy wiremesh packed bed solar air heater," Renewable Energy, vol. 145 pp. 1361-1387, 2020. doi: https://doi.org/10.1016/j.renene.2019.06.137.
[6] I. Singh y S. Singh, "A review of artificial roughness geometries employed in solar air heaters," Renewable and Sustainable Energy Reviews, vol. 92, pp. 405-425, 2018. doi: https://doi.org/10.1016/j.rser.2018.04.108.
[7] T. Alam y M.-H. Kim, "Performance improvement of double-pass solar air heater – A state of art of review," Renewable and Sustainable Energy Reviews, vol. 79, pp. 779-793, 2017. doi: https://doi.org/10.1016/j.rser.2017.05.087.
[8] P. Dhiman, N. S. Thakur, A. Kumar, y S. Singh, "An analytical model to predict the thermal performance of a novel parallel flow packed bed solar air heater," Applied Energy, vol. 88, pp. 2157–2167, 2011. doi: https://doi.org/10.1016/j.apenergy.2010.12.033.
[9] A. A. El-Sebaii, S. Aboul-Enein, M. R. I. Ramadan, S. M. Shalaby, y B. M. Moharram, "Investigation of thermal performance of-double pass-flat and v-corrugated plate solar air heaters," Energy, vol. 36, no. 2, pp. 1076-1086, 2011. doi: https://doi.org/10.1016/j.energy.2010.11.042.
[10] M. Hedayatizadeh, F. Sarhaddi, A. Safavinejad, F. Ranjbar, y H. Chaji, "Exergy loss-based efficiency optimization of a double-pass/glazed v-corrugated plate solar air heater," Energy, vol. 94, pp. 799-810, 2016. doi: https://doi.org/10.1016/j.energy.2015.11.046.
[11] M. A. Karim y M. N. A. Hawlader, "Performance investigation of flat plate, v-corrugated and finned air collectors," Energy, vol. 31 no. 4, pp. 452-470, 2006. doi: https://doi.org/10.1016/j.energy.2005.03.007.
[12] K. Sopian, M. A. Alghoul, E. M. Alfegi, M. Y. Sulaiman, y E. A. Musa, "Evaluation of thermal efficiency of double-pass solar collector with porous–nonporous media," Renewable Energy, vol. 34, no. 3, pp. 640-645, 2009. doi: https://doi.org/10.1016/j.renene.2008.05.027.
[13] M. Cuzminschi, R. Gherasim, V. Girleanu, A. Zubarev, y I. Stamatin, "Innovative thermo-solar air heater," Energy and Buildings, vol. 158, no. 1, pp. 964–970, 2018. doi: https://doi.org/10.1016/j.enbuild.2017.10.082.
[14] A. L. Hernández y J. E. Quiñonez, "Experimental validation of an analytical model for performance estimation of natural convection solar air heating collectors," Renewable Energy, vol. 117, pp. 202-216, 2018. doi: https://doi.org/10.1016/j.renene.2017.09.082.
[15] A. P. Singh, A. Kumar, Akshayveer, y O. P. Singh, "Natural convection solar air heater: Bell-mouth integrated converging channel for high flow applications," Building and Environment, vol. 187, 2021. doi: https://doi.org/10.1016/j.buildenv.2020.107367.
[16] ASHRAE-Standard, "Methods of Testing to Determine the Thermal Performance of Sollar Collectors," American Socienty of Heating, Refrigeration, and Air Conditioning Engineers, Atlanta 93-2003.
[17] P. Naphon, "Effect of porous media on the performance of the double-pass flat plate solar air heater," International Communications in Heat and Mass Transfer, vol. 32, no. 1-2, pp. 140-150, 2005. doi: https://doi.org/10.1016/j.icheatmasstransfer.2004.11.001.
[18] J. A. Duffie y W. A. Beckman, Solar Engineering of Thermal Processes, 4 ed. John Wiley & Sons, Ltd, 2013.
[19] K. S. Ong, "Thermal performance of solar air heaters: Mathematical model and solution procedure," Solar Energy, vol. 55, no. 2, pp. 93-109, 1995. doi: https://doi.org/10.1016/0038-092X(95)00021-I.
[20] A. L. Hernández y J. E. Quiñonez, "Analytical models of thermal performance of solar air heaters of double-parallel flow and double-pass counter flow," Renewable Energy, vol. 55, pp. 380-391, 2013. doi: https://doi.org/10.1016/j.renene.2012.12.050.
[21] S. N. Saha y S. P. Sharma, "Performance Evaluation of Corrugated Absorber Double Flow Solar Air Heater Based on Energy, Effective and Exergy Efficiencies," International Journal of Mechanical & Mechatronics Engineering, vol. 17, no. 1, pp. 63-76, 2018.
[22] J. Quiñonez Choquecota, "Investigación experimental de un calentador solar de aire de doble flujo de convección natural de alta eficiencia," Journal of High Andean Research, vol. 21, no. 4, pp. 274-282, 2019. doi: http://dx.doi.org/10.18271/ria.2019.504.
[23] D. Kumar y B. Premachandran, "Effect of atmospheric wind on natural convection based solar air heaters," International Journal of Thermal Sciences, vol. 138, pp. 263-275, 2019. doi: https://doi.org/10.1016/j.ijthermalsci.2018.12.010.
[24] S. Vijayan, T. V. Arjunan, A. Kumar, y M. M. Matheswaran, "Experimental and thermal performance investigations on sensible storage based solar air heater," Journal of Energy Storage, vol. 31, 2020. doi: https://doi.org/10.1016/j.est.2020.101620.
[25] S. Rashidi, J. A. Esfahania, y A. Rashidi, "A review on the applications of porous materials in solar energy systems," Renewable and Sustainable Energy Reviews, vol. 73, pp. 1198-1210, 2017. doi: https://doi.org/10.1016/j.rser.2017.02.028.
[26] N. F. Jouybari y T. S. Lundström, "Performance improvement of a solar air heater by covering the absorber plate with a thin porous material," Energy, vol. 190, p. 116437, 2020. doi: https://doi.org/10.1016/j.energy.2019.116437.
Publicado
2021-07-25
Cómo citar
[1]
J. Quiñonez Choquecota, Análisis del rendimiento térmico de un calentador solar de aire de convección natural con absorbente corrugado y lecho poroso, tecnia, vol. 31, n.º 2, jul. 2021.
Sección
Energía solar y fotovoltaica