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ABSTRACT 
 
Recent advances in computer vision are leveraging many technological developments in modern industry and automation. In 
this tutorial, it is presented a review of computer vision methods and applications relevant to the use of cameras as 
measurement devices in the automotive industry and robotics. The methods include algorithms for edge and ellipse detection, 
camera calibration, 3-D reconstruction and stereo vision. The applications are elaborated through simulations of three key 
problems: Detection of rims in automotive wheels; estimation of the calibration angles of vehicles and; trajectory 
reconstruction using stereo vision. These applications allow to demonstrate the potential of vision-based technologies in 
solving complex engineering problems in an automated fashion using cameras as sensors. As a result, three general purpose 
methodologies are proposed for solving problems of industrial need that would serve as guidelines for further developments 
in current and other related areas. 
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RESUMEN 

Avances recientes en visión computacional vienen favoreciendo el desarrollo tecnológico en la industria y automatización 
modernas. En este tutorial, se presenta una revisión de métodos de visión computacional y aplicaciones relevantes para el uso 
de cámaras como dispositivos de medición en la industria automotiva y robótica. Los métodos incluyen algoritmos para  
detección de bordes y elipses, calibración de cámaras, reconstrucción 3-D y visión estéreo. Las aplicaciones son elaboradas 
utilizando simulaciones en tres problemas fundamentales: Detección de aros en ruedas automotivas; estimativa de los ángulos 
de calibración en vehículos y; reconstrucción de la trayectoria de un vehículo usando visión estéreo. Estas aplicaciones 
demuestran el potencial de los métodos de visión computacional para resolver problemas de ingeniería complejos de manera 
automatizada utilizando cámaras como sensores. Como resultado, son propuestas tres metodologías de propósito general 
para solución a problemas con demanda industrial y que pueden servir como guías para desarrollos futuros en áreas afines o 
relacionadas. 

Palabras Clave: Visión computacional, detección de aros, ángulos de calibración de vehículos, adometría estéreo 

 

1. INTRODUCTION 

Computer vision is the science of extracting 
information and knowledge from images in order to 
provide an understanding of the world based on 
camera observations. Currently, the research on 
autonomous vehicles has driven many technological 
advances in computer vision methods and 
applications. Some of the state-of-the-art computer 
vision algorithms are 3-D reconstruction from multiple 
camera views, visual odometry (VO) and visual SLAM 
(simultaneous localization and mapping or structure 
from motion), which enable many applications such as 
autonomous navigation, scene reconstruction, map 
creation and exploration, etc. 
 
In this work we present a tutorial on the use of 
computer vision applied to solve actual problems in 

the automotive industry. More specifically, we present 
algorithms for the use cameras as measuring devices 
including edge and ellipse detection, camera 
calibration, 3-D reconstruction and stereo vision. We 
motivate these algorithms with three industrial 
applications: Detection of wheel rims; a system to 
estimate the calibration angles of vehicles and; the 
reconstruction of the trajectory of a vehicle using 
stereo vision. 
 
This tutorial is referenced on a previous work in 
computer vision [1], but with dedicated attention to 
the applications in the automotive field including 
extended theory and results. Therefore, it can be used 
as a self-contained introduction for engineers and 
practitioners to motivate further developments that 
use computer vision in the automotive industry and 
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related fields. The methods were carefully selected 
according to the challenges presented on each 
application. For instance, objection detection tasks on 
Section 2.1 and Section 2.2 are solved using shape 
detection techniques. Section 2.3 to Section 2.5 
introduce the fundamental techniques for the use of 
cameras as measuring devices allowing metrology 
applications such as measuring angles and trajectories. 
 
The applications provide computer vision 
methodologies at an entry level to important problems 
in Advance Driver Assistance Systems (ADAS), Wheel 
Alignment and Mobile Robotics. More specifically, the 
first application discusses how to detect rounded 
shapes in images, which is important for obstacle 
avoidance [2], the second application shows an 
automatic approach for detecting the wheel alignment 
angles of vehicles using cameras as a low cost 
alternative to laser-based devices [3] and, finally, the 
third application shows an application of stereo vision 
in visual odometry to recover the trajectory of a car-
like robot in adverse scenarios where satellite 
information from the GPS is not accessible [4]. 
 
The text is organized as follows: Section 2 presents the 
theory and foundations of computer vision methods; 
Section 3 presents three applications of these methods 
in the automotive industry and robotics; Section 4 
outlines the final remarks and conclusions. 
 
2. Computer vision methods 

In this section we make a summary of selected 
computer vision methods and theory required for the 
applications introduced in the following sections. 
 

2.1. Edge detection 

The edges of an image are regions characterized by 
high changes of pixel intensities [5]. The image edges 
provide a rich source of information and a simplified 
representation of a complex image. Edges can be used 
to detect shapes in object detection tasks such as the 
lines of buildings or roads, or either to isolate 
geometrical shapes such as rounded objects (e.g. cells, 
wheels, balls). 
 
One of the most popular edge detectors was proposed 
by Canny in [6]. The Canny’s algorithm consists of 
convolving a grayscale image with a smoothing filter, 
typically a Gaussian square subimage, to obtain a 
coarse depiction of the original image. A binary 
threshold is applied to the smoothed intensities and 
the regions with the most salient changes are 
identified as the image edges. Figure 1a shows the 
image of a building with pillars showing predominant 
straight-line edges. The image is convolved with a 
Gaussian filter and the result of the thresholding 

process is shown on Figure 1c with the image edges 
depicted as white lines. 

Figure 1. Edge detection in the image of a building. 

2.2. Ellipse detection 

Shape detection methods are instrumental for 
identifying the geometrical shapes of objects in 
images. The detection of shapes has a wide variety of 
applications such as robot localization [5], object 
measurement [7], counting [8] and identification [9]. 
In the automotive industry, detecting wheel shapes 
may be useful for applications such as measuring 
wheel dimensions for detecting anomalies or 
identifying wheeled vehicles for obstacle avoidance on 
the road such as bicycles, motorcycles and cars. 
 
One of the most popular shape detectors is the so 
called Hough transform [10], [11]. The Hough transform 
operates over the edges of an image and is based on a 
voting principle which consists in parametrizing the 
shape to be detected (e.g., a line or an ellipse) to 
produce a mapping of the edge intensities to a space of 
parameters. An accumulator is incremented on each 
point coincidence of the curves in the parameter space 
and the voting is to choose among accumulator cells 
with the highest count representing the parameters of 
the detected shape. 
 
The parametrization of an ellipse of coordinates (𝑢, 𝑣) 
is given by 
 

 
(𝑢𝑒)

2

𝑎2
+
(𝑣𝑒)

2

𝑏2
= 1 , (1) 

 𝑢𝑒 = (𝑢 − 𝑢0) cos Θ + (𝑣 − 𝑣0) sinΘ , (2) 

 𝑣𝑒 = −(𝑢 − 𝑢0) sin Θ + (𝑣 − 𝑣0) cos Θ , (3) 

where 𝑢0 and 𝑣0 are the coordinates of the ellipse 
center, 𝑎 and 𝑏 are the lengths of the semi-major and 
the semi-minor axes, respectively, and Θ is the ellipse 
rotation angle.  
 

2.3. Camera calibration 

Camera calibration is the process of determining the 
parameters of a camera required to use it as a 
measuring device in computer vision and metrology 
applications. The camera parameters consist of the 
intrinsics (focal length, principal point, lens distortion) 
and the extrinsics (rotation and translation with 
respect to world coordinates). The following camera 
calibration procedure, based on the work in [12], uses a 
solid box as calibration pattern as depicted in Fig. 2. 

(a) (b) (c) 
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Figure 2. Solid calibration box and the world coordinates. 

 
The reference points for calibration are the positions 
of the eight vertices of the box in world coordinates 
𝑩𝑘  and their pixel mappings 𝒑̂𝑘, with 𝑘 = 1,… ,8; they 
are related by 

 𝑧𝑘𝒑̂𝑘 = 𝐊(𝐑𝑩𝑘 + 𝒕) . (4) 

 
Calibration consists in estimating the unknowns in (4), 
which are the depths 𝑧𝑘, the matrix of intrinsic 
parameters 𝐊, the rotation 𝐑, and translation 𝒕. The 
procedure consists of grouping sets of three different 
vertices, denoted 𝑩𝑘𝑎, 𝑩𝑘𝑏  and 𝑩𝑘𝑐, and their 

corresponding pixel mappings 𝒑̂𝑘𝑎, 𝒑̂𝑘𝑏  and 𝒑̂𝑘𝑐  

 [𝑩𝑘𝐼
𝑇 ⊗  𝐈 − 𝑩𝑘𝐼𝐼

𝑇 ⊗ 𝐏̂𝑘𝐼𝐏̂𝑘𝐼𝐼
−1] vec(𝐊𝑅) = 0 , (5) 

where ⊗ denotes the Kronecker product, 𝐈 is the 
identity matrix of size 3, vec(∙) denotes the matrix to 
vector operator which stacks the columns of matrix 𝐊𝑅  
to yield a vector of size 9, 𝑩𝑘𝐼  and 𝑩𝑘𝐼𝐼  are defined as 

 𝑩𝑘𝐼 = (0.5𝑩𝑘𝑎 − 𝑩𝑘𝑏 + 0.5𝑩𝑘𝑐) , (6) 

 𝑩𝑘𝐼𝐼 = (−𝑩𝑘𝑎 + 0.5𝑩𝑘𝑏 + 0.5𝑩𝑘𝑐) , (7) 

and the matrices 𝐏̂𝑘𝐼  and 𝐏̂𝑘𝐼𝐼  are defined as 

 𝐏̂𝑘𝐼 = [0.5 𝒑̂𝑘𝑎 −𝒑̂𝑘𝑏 0.5𝒑̂𝑘𝑐] , (8) 

 𝐏̂𝑘𝐼𝐼 = [− 𝒑̂𝑘𝑎 0.5𝒑̂𝑘𝑏 0.5𝒑̂𝑘𝑐] , (9) 

and matrix 𝐊𝑅  is defined as 

 𝐊𝑅 = 𝐊𝐑 . (10) 

 
Equation (5) is extended adding 𝑛 ≥ 3 different sets of 
box vertices and their corresponding pixel mappings to 
form an overdetermined system of equations 

 

[
 
 
 
 
(𝑩1𝐼

𝑇 ⊗ 𝐈 − 𝑩1𝐼𝐼
𝑇 ⊗ 𝐏̂1𝐼𝐏̂1𝐼𝐼

−1)

(𝑩2𝐼
𝑇 ⊗ 𝐈 − 𝑩2𝐼𝐼

𝑇 ⊗ 𝐏̂2𝐼𝐏̂2𝐼𝐼
−1)

⋮
(𝑩𝑛𝐼

𝑇 ⊗ 𝐈 − 𝑩𝑛𝐼𝐼
𝑇 ⊗ 𝐏̂𝑛𝐼𝐏̂𝑛𝐼𝐼

−1)]
 
 
 
 

⏟                  
𝐏

vec(𝐊𝑅)⏟    
𝒙

= 0 , (11) 

 
Equation (11) is a system of 3𝑛 ×9 homogeneous 
equations with solutions in the right null space of 𝐏. 
However, the matrix 𝐏 may not have a null space since 
the pixel positions of the box vertices are only calculated 
approximately. Hence, the vector 𝒙 will be estimated as 
the right-singular vector of 𝐏 associated to the least non-
zero value. The vector 𝒙 is reshaped into a matrix 𝐊̅𝑅  of 
size 3, which is an estimate of matrix 𝐊𝑅, 

 𝐊̅𝑅 = reshape(𝒙, 3 × 3) . (12) 

 
By exploiting the orthogonal property of the rotation in 
(10), an estimate of the product of the matrix of intrinsic 
parameters 𝐊 and its transpose 𝐊𝑇 can be derived as 

𝐊𝑅𝐊𝑅
𝑇 = [

(𝑆𝑥𝑓)
2 + 𝑢0

2 𝑢0𝑣0 𝑢0

𝑢0𝑣0 (𝑆𝑦𝑓)
2
+ 𝑣0

2 𝑣0
𝑢0 𝑣0 1

]

≅ 𝐊̃𝑅𝐊̃𝑅
𝑇  , 

(13) 

where matrix 𝐊̃𝑅𝐊̃𝑅
𝑇  is the normalized version of 𝐊̅𝑅𝐊̅𝑅

𝑇 , 
obtained by imposing its third row, third column 
element to be 1, as in the same element of 𝐊𝐊𝑇. The 
estimate of the matrix of intrinsic parameters, denoted 

𝐊̃, is obtained from the elements of 𝐊̃𝑅𝐊̃𝑅
𝑇 , as 

 𝐊̃ = [
𝑆̃𝑥𝑓  0  𝑢̃0 

 0  𝑆̃𝑦𝑓  𝑣̃0 

 0 0 1

] , (14) 

 𝑢̃0 ≅ row 1, column 3 of 𝐊̃𝑅𝐊̃𝑅
𝑇  , (15) 

 𝑣̃0 ≅ row 2, column 3 of 𝐊̃𝑅𝐊̃𝑅
𝑇  , (16) 

 𝑆̃𝑥𝑓 ≅ √row 1, column 1 of 𝐊̃𝑅𝐊̃𝑅
𝑇 − 𝑢̃0

2  , (17) 

 𝑆̃𝑦𝑓 ≅ √row 2, column 2 of 𝐊̃𝑅𝐊̃𝑅
𝑇 − 𝑣̃0

2  , (18) 

 
A first approximation of the rotation is derived from (10) 
and the results of (14) and (12), as 

 𝐑 = 𝐊−1𝐊𝑅 ≅ 𝐊̃
−1𝐊̅𝑅 . (19) 

 
To satisfy the orthogonal property of rotations, the final 
rotation estimate, denoted 𝐑̅, is obtained from the 

singular value decomposition (SVD) of matrix 𝐊̃−1𝐊̅𝑅  

 𝐑̅ = 𝐔𝐕𝑇  , (20) 

where 𝐔 and 𝐕 are matrices of the left and right singular 

vectors of 𝐊̃−1𝐊̅𝑅, respectively. 
 
The estimate of the vector of depth reprojections, 
denoted 𝝀, and the translation vector, denoted 𝒕, are 
obtained simultaneously by extending (4) to 𝑛 ≥ 2 
different pairs of vertices and their pixel mappings, and 
solving for 

[
 
 
 
 
𝒑̂1  0  …  0 −𝐊̃

 0  𝒑̂2  …  0  −𝐊̃

⋮  ⋮ ⋱ ⋮  −𝐊̃
 0  0 …  𝒑̂𝑛 −𝐊̃]

 
 
 
 

[
𝝀
𝒕
] =

[
 
 
 
𝐊̅𝑅𝑩1
𝐊̅𝑅𝑩2
⋮

𝐊̅𝑅𝑩𝑛]
 
 
 
 , (21) 

where 𝝀 is defined as 

 𝝀 = [𝑧1 𝑧2 … 𝑧𝑛]𝑇 . (22) 

 
2.4. 3-D reconstruction 

Figure 3 depicts the 3-D reconstruction of a point in the 

space 𝑷⋆ by triangulation. Triangulation consists of 
finding the closest point between the rays 𝒍 = (𝑂𝑙 , 𝑝𝑙) 
and 𝒓 = (𝑂𝑟 , 𝑝𝑟) from the origins of left and right 
cameras to the point 𝑷. An optimal solution to the 3-D 
reconstruction problem is obtained by minimizing the 
geometric error in spatial position and solving for 
depths 𝑧𝑙  and 𝑧𝑟 
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 𝑧𝑙𝒑𝑙 − 𝑧𝑟𝐑
𝑇𝒑𝑟 − 𝒕 = 𝒆 , (23) 

[
𝑧𝑙
𝑧𝑟
] = [

𝒑𝑙
𝑇𝒑𝑙 −𝒑𝑙

𝑇𝐑𝑇𝒑𝑟
−𝒑𝑙

𝑇𝐑𝑇𝒑𝑟 𝒑𝑟
𝑇𝒑𝑟

]

−1

[
𝒑𝑙
𝑇𝒕

−𝒑𝑟
𝑇𝐑𝒕

] , (24) 

where 𝒆 is the error vector in spatial position of 
crossing rays, 𝒑𝑙  and 𝒑𝑟 are normalized pixel 
coordinates (focal length  𝑓 = 1𝑚) and (𝐑, 𝒕) are the 
extrinsic parameters denoting the transformation 
between camera views. 

Figure 3. The 3-D reconstruction by triangulation. 

 
2.5. Stereo vision 

Two camera views are related by epipolar geometry or 
the geometry of stereo vision. Figure 4 illustrates the 
epipolar relations. The line connecting the camera 
projection centers is called baseline. The baseline 
intersects the image planes 𝜋𝑙  and 𝜋𝑟  at special points 
called epipoles 𝒆𝑙  and 𝒆𝑟. A point in the 3-D space 𝑷 is  
described by the vectors 𝑷𝑙 = [𝑥𝑙 𝑦𝑙 𝑧𝑙]𝑇 and 𝑷𝑟 =
[𝑥𝑟 𝑦𝑟 𝑧𝑟]𝑇 and the camera projections 𝒑𝑙 =
[𝑥𝑙
′ 𝑦𝑙

′ 𝑓𝑙]
𝑇 and 𝒑𝑟 = [𝑥𝑟

′ 𝑦𝑟
′ 𝑓𝑟]

𝑇, where 𝑓𝑙  and 𝑓𝑟 
are the focal lengths. The point 𝑷 and the projection 
centers 𝑂𝑙  and 𝑂𝑟 describe a plane 𝜋𝑃  called epipolar 
plane (in gray color). The lines connecting the epipoles 
to the camera projection centers are called epipolar 
lines, denoted 𝒖𝑙  and 𝒖𝑟. The stereo configuration also 
imposes the epipolar constraint which restricts the 
match of a point in an image to the epipolar line on the 
opposite image. 

Figure 4. The epipolar geometry. 

 
The translation vector 𝒕 and rotation matrix 𝐑 are the 
extrinsic parameters that relate the reference frames 

of the left and right cameras. Then, the points 𝑷𝑙  and 
𝑷𝑟  are related by the rigid body transformation 

 𝑷𝑙 = 𝐑
𝑇𝑷𝑟 + 𝒕 . (25) 

 
The point 𝑷 is related to its perspective projection 𝒑 
using the standard pinhole camera model 

 𝑧𝑙𝒑𝑙 = 𝑓𝑙𝑷𝑙  , (26) 

 𝑧𝑟𝒑𝑟 = 𝑓𝑟𝑷𝑟 . (27) 

 
The essential matrix 𝐄 of camera coordinates 
establishes an epipolar constraint between the left and 
right projections 

 𝒑𝑟
𝑇𝐄𝒑𝑙 = 0 , (28) 

 𝐄 = 𝐑𝐓̂ , (29) 

where 𝐓̂ is the skew-symmetric matrix expressing the 
cross product with the translation vector 𝒕 × (∙). The 
points 𝒑̂𝑙  and 𝒑̂𝑟 are the pixel mappings in 
homogenous coordinates corresponding to 𝒑𝑙  and 𝒑𝑟 

 𝒑𝑙 = 𝑓𝑙𝐊𝑙
−1𝒑̂𝑙 , (30) 

 𝒑𝑟 = 𝑓𝑟𝐊𝑟
−1𝒑̂𝑟  , (31) 

where 𝐊𝑙  and 𝐊𝑟 are the calibration matrices of the 
left and right cameras, respectively. 
 
The fundamental matrix 𝐅 of image coordinates 
establishes the epipolar constraint between the left 
and right projections as 

 𝒑̂𝑟
𝑇𝐅𝒑̂𝑙 = 0 , (32) 

 𝐅 = 𝐊𝑟
−𝑇𝐄𝐊𝑙

−1 . (33) 

 
Matrices 𝐄 and 𝐅 can be estimated using the eight-
point algorithm [9]. 
 
Figure 5 shows the geometric relations between the 
cameras and the world. Rotations 𝐑𝑙  and 𝐑𝑟  and 
translations 𝒕𝑙  and 𝒕𝑟 describe the origin of world 
coordinates 𝑂𝑤  in terms of the reference frames of the 
left and right cameras, respectively. The extrinsic 
parameters of the stereo system 𝐑 and 𝒕 are calculated 
with respect to the reference frame of the left camera, 
such as 

 𝐑 = 𝐑𝑟𝐑𝑙
𝑇  , (34) 

 𝒕 = 𝒕𝑙 − 𝐑
𝑇𝒕𝑟  . (35) 

𝑂𝑙 𝑂𝑟 

𝑷⋆ 
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Figure 5. The extrinsic parameters of a stereo system. 

 
3. Automotive applications 

In this section we present three applications of 
computer vision methods in the automotive industry 
and robotics. In order to highlight the potential of the 
methods, we make use of simulations using Blender, 
which is an open-source platform used for generating 
virtual scenarios as ground truth data for evaluation 
[13], [14]. In Section 3.1, real images of a wheel were 
used. In Section 3.2, we used the 3-D model of a vehicle 
and an array of eight cameras grouped in pairs, as in 
Fig. 8. In Section 3.3, we used a 3-D indoors 
environment comprised of texturized furniture, chairs, 
floor, ceiling, windows, natural and artificial 
illumination to enable the detection of visual 
keypoints. A 3-D model of an automotive vehicle with a 
mounted pair of stereoscopic cameras is also 
introduced in the environment. The car-like robot 
simulates an autonomous vehicle following a 
predefined trajectory inside a virtual environment, 
capturing stereo images. The ground truth path 
contains straight and diagonal trajectories with 
rotations at different angles. 
 

3.1. Detection of wheel rim 

In this application we describe a method for detecting 
rims in automotive wheel images using the Hough 
transform. Rim detection may be useful to identify 
wheeled vehicles in tracking applications [2]. Figure 6a 
depicts a wheel image originally affected by poor 
illumination and lens distortion which are corrected 
using the histogram equalization and correction of lens 
distortion. Figure 6b shows the resulting image 
including both corrections. 

 
Figure 6. Original and distortion-free wheel images. 

The ellipse containing the wheel rim is detected using 
the Hough transform applied to elliptical shapes [15], 
[16]. The procedure starts by converting the RBG 
image to grayscale intensities 
 𝑌 = 0.299𝑅 + 0.587𝐺 + 0.114𝐵 , (36) 

 
The Canny algorithm is computed over the grayscale 
image in order to detect the edges of the wheel. The 

rim ellipse is searched over the image edges using the 
ellipse parametrization given in (37-38). Figure 7 
illustrates the detection results. Figure 7b represents 
the detected wheel rim ellipse in red thick line.  

Figure 7. Wheel rim detection 

3.2. Toe and camber calibration angles 

In this application we describe a system to recover the 
calibration angles of a vehicle. The system can be used 
as an automatic system to measure the wheel 
geometry and also to determine the toe and camber 
calibration angles. Figure 8 depicts the measuring 
system consisting of four stereo camera subsystems 
associated to wheels 1, 2, 3 and 4. The stereo 
subsystems are attached to a support of fixed baseline 
to have the center of the wheels and the optical axes 
of the cameras aligned at approximately the same 
height. The cameras are oriented towards the wheels 
and operate in precision and reference positions. 
Precision cameras 1, 3, 5 and 7 are perpendicular to the 
wheels to capture the largest possible images of the 
rims. Reference cameras 2, 4, 6 and 8 are oriented 
towards the geometric center of the system to capture 
images of the rims.  

 
Figure 8. The wheel measuring system. 

 
Rim ellipses are detected using the procedure 
described in previous section. Figure 9a shows the 
wheel images of cameras 7 and 8 and the identified rim 
ellipses (in dotted lines). The rim points on the left 
image are associated to epipolar lines on the right 
image due to the epipolar constraint. Epipolar lines 
intersect the rim ellipse at two points, as shown in Fig. 
9b. The epipolar lines of the upper and lower sections 
of the rim at 10% of the rim diameter are filtered out, as 
shown in Fig. 9d. 

Figure 9. The epipolar lines of a wheel contour and the 
matching process. 

 
 

(a) (b) Histogram equalization 

(a) 
Edge 

(b) 
Ellipse 

(a) Ellipse points. (b) Epipolar lines. 

c) Correspondences. (d) Pruning regions. 
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a illustrates the result of the 3-D wheel rim 
reconstruction. The 3-D wheel rim is reconstructed by 
triangulation of corresponding 2-D rim points using 
(24). The wheel axis system is an auxiliary reference 
frame defined as the orthogonal 3-D basis resulting 
from the Principal Component Analysis (PCA) of the 3-
D wheel rim, as illustrated in Fig. 10b. The vectors 𝒖 
and 𝒗 are located on the wheel rim plane and the 
vector 𝒘 is collinear with the wheel spin axis. The local 
PCA coordinates are converted to global coordinates in 
the world reference frame using the extrinsic 
parameters of the global calibration process of the 
corresponding stereo subsystem. 

 

The camber and toe alignment angles of the front 
wheels are measured in a 3-D global system called the 
car reference frame defined by axis 𝑥′ in the direction 
of the line that connects the centers of wheels 3 and 4, 
axis 𝑦′ defined in the direction of the line that 
connects the centers of wheels 3 and 2 and axis 𝑧′ 
given by the cross product of 𝑥′ and 𝑦′. The triad 𝑥′, 𝑦′ 
and 𝑧′ is normalized to yield the unit vectors 𝑥̂, 𝑦̂ and 𝑧̂ 
denoting the car reference frame. 

Figure 10. 3-D reconstruction of wheel 4 and its associated 
PCA directions. 

 
Figure 11a depicts the location of the wheel spin axes in 
the car reference frame. Vectors 𝒘1, 𝒘2, 𝒘3 and 𝒘4 
are collinear with the wheel spin axes and 
perpendicular to wheels 1, 2, 3 and 4, respectively. 
Vectors 𝒘3 and 𝒘4 are approximately collinear with 
the 𝑥̂-axis. Vectors 𝒘1 and 𝒘2 are perpendicular to the 
misaligned wheels 1 and  
2, respectively. 

 
Figure 11. The car reference frame and the wheel alignment 

angles. 

 
Figure 11b depicts the location of the wheel alignment 
angles in the car reference frame. Vector 𝒘1𝑥𝑧  is the 
projection of 𝒘1 onto the 𝑥̂𝑧̂ plane. The camber angle 
of wheel 1, denoted 𝛾1, is the angle from 𝒘1𝑥𝑧  to the 𝑥̂-
axis and is calculated as 

 𝛾1 = arccos (
𝒘1𝑥𝑧 ∙ 𝒘4
‖𝒘1𝑥𝑧‖‖𝒘4‖

) . (39) 

Vector 𝒘2𝑥𝑧  is the projection of 𝒘2 onto the 𝑥̂𝑧̂ plane. 
The camber angle of wheel 2, denoted 𝛾2, is the angle 
from 𝒘2𝑥𝑧  to the −𝑥̂-axis and is calculated as 

 𝛾2 = arccos (
𝒘2𝑥𝑧 ∙ 𝒘3
‖𝒘2𝑥𝑧‖‖𝒘3‖

) . (40) 

Vector 𝒘1𝑥𝑦  is the projection of 𝒘1 onto the 𝑥̂𝑦̂ plane. 

The toe angle of wheel 1, denoted 𝜓1, is the angle from 
𝒘1𝑥𝑦  to the 𝑥̂-axis and is calculated as 

 𝜓1 = arccos (
𝒘1𝑥𝑦 ∙ 𝒘4

‖𝒘1𝑥𝑦‖‖𝒘4‖
) . (41) 

Vector 𝒘2𝑥𝑦  is the projection of 𝒘2 onto the 𝑥̂𝑦̂ plane. 

The toe angle of wheel 2, denoted 𝜓2, is the angle 
from 𝒘2𝑥𝑦  to the −𝑥̂-axis and is calculated as 

 𝜓2 = arccos (
𝒘2𝑥𝑦 ∙ 𝒘3

‖𝒘2𝑥𝑦‖‖𝒘3‖
) . (42) 

 
3.3. Visual odometry 

Visual odometry (VO) is a technique to estimate the 
ego-motion of a vehicle using imaging sensors. VO has 
gained recent attention as a technique to achieve 
autonomous navigation in mobile robotics. In the 
following application the path of robot moving in an 
unstructured environment is recovered using a stereo 
camera system in a simulated scenario [17]. 
 
The system setup consists of two cameras of 720×480 
resolution and fixed baseline mounted on a mobile 
robotic platform. The extrinsic parameters of the 
stereo system are rotation matrix 𝐑 and translation 
vector 𝒕, as in Fig. 4. Calibration is performed using the 
algorithm introduced in previous section to determine 
the intrinsic and extrinsic camera parameters. Local 
robot motion is estimated in the robot reference frame 
located at the projection center of the left camera. The 
world reference frame is arbitrarily located at the 
origin of the left camera at the initial position of the 
robot. 
 
The image matching is based on a practical 
implementation of the SIFT algorithm [18]. Four stereo 
images are captured at consecutive robot steps 𝑖 − 1 
and 𝑖, where 𝑖 ∈ ℕ. The images are analyzed as in the 
sequence of Fig. 12. The image planes 𝜋𝑙  and 𝜋𝑟  
represent the left and right camera images, 
respectively. The main assumption is that consecutive 
images preserve keypoint correspondences whenever 
the robot undergoes a small displacement. The set of 
common keypoints between the four images is the 
input data for VO estimation. 

𝜋𝑙,𝑖−1 
1 

3 

𝜋𝑟,𝑖−1 

𝜋𝑟,𝑖 
2 

𝜋𝑙,𝑖 

4 

𝒖4 

𝒗4 

𝒘4 

(a) 3-D wheel rim edge reconstruction. (b) The wheel axis system. 
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Figure 12. Stereo matching sequence. 

 
Figure 13 illustrates the keypoint correspondences at 
two successive robot steps. Local robot motion is 
represented by rotation matrix 𝐑𝑖  and translation 
vector 𝒕𝑖. Local robot motion is recovered from the 3-D 
reprojections of the keypoints on the left camera, 
denoted 𝑷𝑘  and 𝑸𝑘, at robot steps 𝑖 − 1 and 𝑖, 
respectively, where 𝑘 is the keypoint index. The 3-D 
reprojections are calculated by triangulation, as in (24). 
The results are arranged in matrices of homogeneous 

coordinates 𝐏̂ and 𝐐̂ of size 4× 𝑘, according to 

 𝐏̂ = [
𝑷1 𝑷2 … 𝑷𝑘
1 1 … 1

] , (43) 

 𝐐̂ = [
𝑸1 𝑸2 … 𝑸𝑘
1 1 … 1

] . (44) 

Figure 13. Keypoint correspondences and the robot motion 
model. 

 
Local robot motion is estimated from the submatrices 
of the block matrix 𝐌 (transformation matrix) that 

relates matrices 𝐏̂ and 𝐐̂, such as 

 𝐌 = 𝐏̂𝐐̂† , (45) 

 𝐑𝑡 = [
𝐑̅𝑖
𝑇 𝒕̅𝑖
𝟎𝑇 1

] , (46) 

where 𝐑̅𝑖  is the 3×3 rotation matrix and 𝒕̅𝑖  is the 3×1 
translation vector, and 𝟎𝑇 is a zero matrix of size 3×1. 
 
Visual odometry is calculated by the composition of 
successive rotations and translations. The robot pose, 
denoted 𝑩𝑖, can be defined recursively as 

 𝑩𝑖 = 𝑩𝑖−1 + (∏𝐑̅𝑛
𝑇

𝑖−1

𝑛=0

) 𝒕̅𝑖 ,       𝑖 > 0 , (47) 

or as in the explicit version 

 𝑩𝑖 = 𝑩0 + ∑ (∏𝐑̅𝑛
𝑇

𝑚−1

𝑛=0

) 𝒕̅𝑚

𝑖

𝑚=1

,       𝑖 > 0 , (48) 

where 𝑩0 is the initial robot pose, 𝐑̅0 = 𝐈3, and 𝐈3 is the 
identity matrix of size 3. 
 
The system is simulated in the 3-D graphics software 
Blender. In this application, a 3-D virtual indoors 
environment is used. The environment is comprised of 
textured office furniture, floor, ceiling, windows, and 
artificial illumination. A mobile robot is simulated by a 
stereo camera system of fixed baseline. The robot 
moves inside the virtual environment on a predefined 

trajectory, capturing images from both cameras as it 
traverses small increments of the distance along the 
path. Figure 14 depicts the reconstruction of a robot 
trajectory with 𝑖 = 11 steps. The ground truth 
trajectory contains straight and diagonal paths and 
rotations at different angles. The deviation error of the 
reconstructed path is measured in units of length as 

 𝑒𝑖 = ‖𝑩̃𝑖 −𝑩𝑖‖ , (49) 

where 𝑩̃𝑖  and 𝑩𝑖  are the estimated and the actual 
robot poses at step 𝑖, respectively. VO yields a 
Gaussian error distribution of mean 𝜇 = 0.2488𝑚 and 
standard deviation 𝜎 = 0.1035𝑚. The VO algorithm is 
plausible of being implemented in real-time scenarios 
[19]. The results may be improved in combination with 
state-of-the-art techniques in visual navigation for 
autonomous vehicles [4], [20]. 

Figure 14. The original robot path and the stereo visual 

odometry reconstruction. 

 
Conclusions 

In this paper we reviewed computer vision methods 
applied to automotive applications. The methods 
presented included edge and ellipse detection, camera 
calibration, 3-D reconstruction and stereo vision which 
in group constituted the foundations for the use of 
cameras as measuring devices. 
 
The automotive applications were the detection of 
wheel rim, the estimation of toe and camber 
calibration angles and a visual odometry system using 
a pair of cameras. The results demonstrated the 
potential of computer vision methods in solving actual 
problems of industrial relevance in automotive 
industry. 
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