Síntesis de YAIO₃ (YAP) policristalino por el método de combustión en solución

Synthesis of polycrystalline YAIO₃ (YAP) by the solution combustion process

Antonio Lazo¹, Carlos Paucarchuco², Hector Loro²

¹Facultad de Ingeniería Geológica, Minera y Metalúrgica Universidad Nacional de Ingeniería, Av. Túpac Amaru Nº 210- Rímac- Lima ²Facultad de Ciencias, Universidad Nacional de Ingeniería, Av. Túpac Amaru Nº 210- Rímac- Lima

RESUMEN

Se presenta el método de combustión en solución y su aplicación para la síntesis de YAlO $_3$ (YAP), fueron usados como combustibles para la reacción de combustión y síntesis la urea y glicina, del YAP. Usando las técnicas de difracción de rayos X (XRD) por el método del polvo y microscopia electrónica de barrido (MEB) fueron analizadas la parte estructural y morfológica de las muestras obtenidas. Los difractogramas de Rayos X muestran una excelente correspondencia con lo reportado en la literatura para este material. Se suministran también los resultados de las muestras de material YAl $_X$ Cr $_{X-1}$ O $_3$, dopado con Cr 3 + con x = 0.001, 0.01, que exhiben picos de difracción dominantes debidos a la fase ortorrómbica de YAlO $_3$.

Keywords: YAP, YAIO3, Combustion method

ABSTRACT

The solution-combustion process is presented, as well as its application to the synthesis of YAlO₃ (YAP). Urea and glycine were used as fuel for the combustion reaction and synthesis of the YAP. The structure and morphology of the obtained sample were analyzed using the X-ray diffraction (XRD) powder method and scanning electron microscopy (SEM). The X-ray patterns showed an excellent agreement with data reported in the literature for this material. Results are also given for samples of $YAl_{X}Cr_{X-1}O_{3}$ doped with Cr^{3+} , with x = 0.001, 0.01, which showed dominant diffraction peaks due to the orthorhombic phase of $YAlO_{3}$.

Keywords: YAP, YAIO3, combustion method.

INTRODUCCIÓN

Desde un punto de vista tecnológico, el óxido de Itrio y aluminio YAIO₃ (YAP) es un material muy interesante y que puede ser usado como matriz para aplicaciones láser, holografía [1].

Además dopado con tierras raras se le utiliza para centelleadores, pantallas de catodo-luminiscencia y pantallas de imagen de rayos X, debido a esto resulta muy importante el poder sintetizarlo, dada su importancia y por pertenecer a la familia del denominado sistema binario Al₂O₃-Y₂O₃, daremos una breve descripción a continuación.

El sistema binario Al₂O₃-Y₂O₃

Las distintas composiciones del sistema binario Al_2O_3 - Y_2O_3 , proveen compuestos derivados de los óxidos de itrio y de aluminio, como el YAlO $_3$ (YAP), granate de itrioaluminio $Y_3Al_5O_{12}$ (YAG) y el $Y_4Al_2O_9$

(YAM) presentan propiedades ópticas interesantes, especialmente cuando son dopados con tierras raras o metales de transición.

Dependiendo del dopante usado, pueden ser adecuados como medio activo para láser de estado sólido, fósforos, termoluminescentes, registradores holográficos y colorantes.

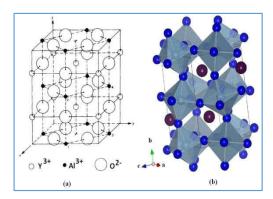

A continuación se da una tabla con los principales datos cristalográficos de esta familia del sistema ${\rm Al_2O_3^-}$ ${\rm Y_2O_3}$ ver Tabla 1.

TABLA 1. Datos cristalográficos del sistema Al_2O_3 - Y_2O_3

Fase	Estructura	Grupo espacial	Parametros de red (nm)
YAG (Y ₃ Al ₅ O ₁₂)	Cúbica	la3d	a=1,201
YAM (Y ₄ Al ₂ O ₉)	Monoclínica		a=0,737, b=1,047, c=1,112, β=108,5°
YAP (YAIO ₃)	Ortorrómbica	Pnma	a=0,5179,b=0,5329 c=0,7370
YAH (YAIO ₃)	Hexagonal	P63=mmc	a=0,3678,b=1,052

Correspondencia: tony2530@hotmail.com

El ${\rm YAIO_3}$ cristaliza en una estructura ortorrómbica del tipo perovskita centro simétrica de grupo espacial Pnma ver figura 1.

FIGURA 1. Estructura cristalina ortorrómbica distorsionada de la perovskita para el YAIO3. Esta imagen fue obtenida usando el software libre VESTA.

Procedimiento Experimental

En este trabajo se describe el método de combustión el solución para la síntesis del YAlO $_3$ policristalino puro y YAl $_{\rm X}$ Cr $_{\rm 1-x}$ O $_3$ dopado con Cr $^{3+}$

Se utilizó en la Facultad de Ciencias de la UNI, un horno tipo manta térmica diseñado y su sistema de evacuación de gases construido especialmente para este tipo de síntesis por combustión ver figuras 2 y 3 a continuación.

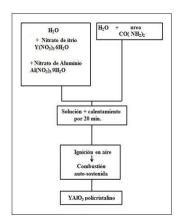

FIGURA 2. Conjunto horno manta térmica y caja controladora de temperatura de la Facultad de Ciencias UNI

FIGURA 3. Conjunto cámara de protección en el proceso de síntesis y evacuación de gases

Usando una reacción química para el método de combustión basada en el combustible urea U y se sintetizo muestras policristalinas de YAlO₃.

En la primera prueba realizada se uso solo urea CO(NH₂)₂, se siguieron los pasos descritos en el siguiente diagrama tomado de Huamán y Col. [2] ver figura 4.

FIGURA 4. Diagrama para síntesis de YAP (YAIO3) puro por el método de combustión en solución solo con urea.

La reacción de combustión es exotérmica y debe suministrar el calor necesario para la reacción de síntesis, según la ecuación (1) siguiente [3, 4]:

 $CO(NH_2)_2 + (3/2) O_2 \rightarrow CO_2(g) + 2H_2O + N_2(g)$ (1), en la reacción de síntesis por combustión, se usó la reacción estequiometrica (2).

 $Y(NO_3)_3 6H_2O + AI(NO_3)_3 9H_2O + mCO(NH_2)_2 + m(3/2)O_2 \rightarrow$ $YAIO_3 + (2m+15)H_2O + (3+m)N_2 + mCO_2 + (15/2)O_2$ (2), resolviéndose para m = 5 moles.

En esta síntesis se disolvió nitrato de itrio $Y(NO_3)_36H_2O$ y nitrato de cromo $Cr(NO_3)_39H_2O$ en agua destilada, a esta mezcla se le agrego urea, $CO(NH_2)_2$, disuelta en agua desionizada.

La mezcla fue sometida a agitación por un intervalo de 10 min en un bequer a fin de uniformizar la mezcla, luego fue transferida a un recipiente y calentada a 398 °C gradualmente en el horno abierto, dentro de una cámara que permitía la extracción de gases.

Se observó una fuerte emisión de gases durante el proceso debido a la emisión de ${\rm CO_2}$, nitrógeno ${\rm N_2}$ y evaporación del agua hasta obtener una delgada capa con los elementos restantes en el fondo del recipiente Para la caracterización estructural,

Las muestras se llevaron al laboratorio de difracción de rayos X de la Facultad de Ciencias Físicas de la Universidad Nacional Mayor de San Marcos UNMSM, en un difractómetro de rayos X marca BRUKER, modelo D8-FOCUS. El modelo utiliza un tubo de Cu, cuya

longitud de onda λ = 1.5406A, que corresponde a la k α 1, el rango de las medidas de 2 θ : entre 10° a 90°, con paso 0.02°, tiempo por paso 0.4 s. Generador Rayos-X, con tipo de detector SD Lynx-eye.

En el difractograma siguiente mostrado puede verse el resultado de la primera prueba como se ve en la figura 4.

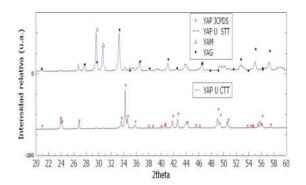


FIGURA 5. Difractograma de muestra YAP sin y con tratamiento térmico de 700°C usando cantidad de urea U=5 moles de urea, correspondiente a la primera prueba

Se observa que la muestra YAP U STT presenta una mezcla de fases YAP, YAM y YAG muestras. Con el fin de obtener una muestra limpia de impurezas de otras fases, se realizó un tratamiento térmico al material obtenido.

Este tratamiento consistió en calentar la muestra a 700°C por un periodo de 3 horas con pendiente de calentamiento de 60°C por hora. Obteniéndose de muestra anterior la muestra YAP U CTT donde se observa fase YAP predominante con trazas de fase YAM.

En la segunda prueba se realiza la síntesis usando el doble número de moles de urea (2U), en la combustión se usa m = 10 moles en la reacción (2) procedimiento usado por Lazo y Huamán [5, 2], esto para evitar pérdidas al momento de la combustión.

De los difractogramas mostrados en la figura 6, se observa que presentan la fase YAP predominante en las dos muestras sin y con tratamiento térmico, en la muestra sin tratamiento térmico YAP 2U STT existen trazas de otras fases YAM y YAG con picos pequeños que se consiguen reducir un poco al aplicar tratamiento térmico a la muestra YAP 2U CTT.

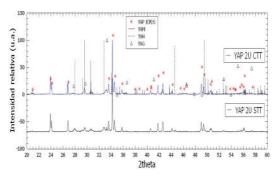
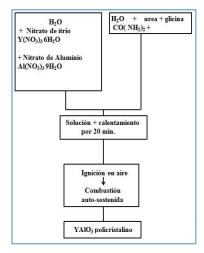



FIGURA 6. Difractograma de muestra YAP sin y con tratamiento térmico de 1000°C usando cantidad 2U = 10 moles de urea correspondiente a la segunda prueba

Para la síntesis definitiva de YAP puro se uso una mezcla de urea y glicina balanceando adecuadamente la ecuación química con los nitratos $Y(NO_3)_3$ $6H_2O$, $Al(NO_3)_3.9H_2O$, y los combustibles Urea, (CH_4N_2O) y Glycina, $(C_3H_5NO_3)$ en la siguiente reacción [IANO15]:

$$\begin{aligned} &6Y(NO_3)_3 + 6AI(NO_3)_3 + 10C_2H_5N_2O + 15CH_4N_2O \Rightarrow \\ &6YAIO_3 + 35CO_2 + 38N_2 + 55H_2O \end{aligned} \tag{3},$$

y seguimos la serie de etapas que están indicados en el diagrama siguiente figura 7:

FIGURA 7. Diagrama para síntesis de YAP (YA \log_3) puro por el método de combustión en solución con mezcla de urea y glicina

Fue sintetizada la muestra YAP GU STT usando la mezcla urea-glicina con la relación combustible glicina (G) y urea (U) en G/U=1.5 sugerida por lanos y Col. [6] ver figura 8.

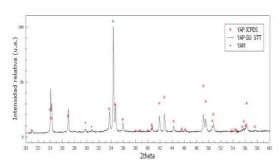


FIGURA 8. Difractograma de muestra YAP GU STT con YAP puro directamente sin tratamiento térmico

En el siguiente difractograma se muestra predominantemente la fase YAP pura, YAP GU STT sin necesidad de ningún tratamiento térmico adicional, con presencia de trazas de YAM.

A la muestra obtenida se le sometió a análisis de microscopia de barrido, la caracterización morfológica fue realizada en el laboratorio de microscopia

electrónica del Instituto Peruano de Energia Nuclear (IPEN) el microscopio electrónico de Barrido marca VEGA TESCAN.

La imágenes de microscopia electrónica de barrido de la muestra YAP U STT es mostrada en la figura 9. Se observa material sintetizado en forma de hojuelas irregulares y con agujeros producto del escape de gases en el momento de la combustión.

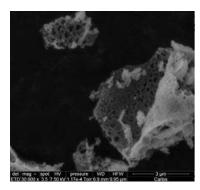


FIGURA 9. Imagen de microscopia electrónica de barrido de la muestra YAP U STT, mostrando material YAP poroso sintetizado y material de combustión incompleta, escala 3 µm.

Se observa también mezcla de productos de combustión junto con material sintetizado.

A continuación las imágenes de microscopia electrónica de barrido de la síntesis llevada a cabo con la mezcla urea (U) más glicina (G).

Se observa una mayor homogeneidad en el producto resultante sin mucho material residual.

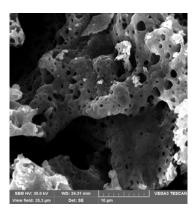


FIGURA 10. Imagen de microscopia electrónica de barrido de la muestra YAP GU STT, sintetizada usando urea y glicina, escala 10 µm.

Los parámetro de red obtenidos por ajuste Rietveld están indicados en la Tabla 2.

TABLA 2. Parámetros de red obtenidos

Points	Å	
а	5.18035(1)	
b	5.32768(1)	
С	7.37319(1)	

Fue sintetizada una muestra con (YAP) YAIO $_3$ dopado al 0.1% (x =0.001) del ion Cr $^{3+}$, a la cual luego se le aplico tratamiento térmico, se usó la ecuación estequiométrica recomendada por lanos y Col. [6], donde usan la relación de combustibles Glicina (G) a Urea (U) de (G/U=1.5).

Al finalizar la combustión del difratograma de la figura 11, obtenemos un material amorfo, indicándonos que no hubo combustión completa y la temperatura no fue alta.

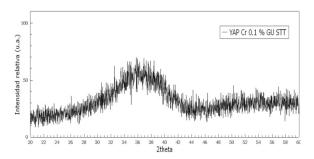


FIGURA 11. Difractograma de muestra YAP:Cr 0.1%(x = 0.001) sin tratamiento térmico

Esto queda confirmado en la referencia de Blosi y Col. [7], la cual se menciona que la combustión ocurre a la temperatura de 500°C, no consiguiéndose por tanto las altas temperaturas necesarias para ir directamente hacia la formación de una fase YAP pura (1600°C).

Al aplicar un tratamiento térmico de 1000°C por 3 horas, se obtiene la muestra YAP Cr 01 GU CTT 1000 ver figura 12, la que presenta una mejor definición hacia una estructura cristalina con la fase YAP, pero con una mezcla irregular de otras fases.

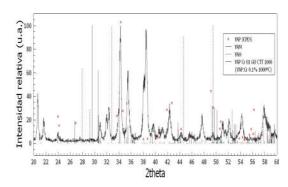


FIGURA 12. Difractograma de muestra YAP:Cr 0.1% (x = 0.001) con tratamiento térmico

Fue sintetizada una muestra con (YAP) YAlO₃ dopado al 1% (x=0.01) del ion Cr^{3+} sin y con tratamiento térmico. Con el fin de aumentar la temperatura al momento de la combustión, se uso a misma ecuación estequiométrica (3) dada por lanos y Col. [6] pero esta vez variándose la relación de combustibles a G/U =2.

Esta nueva relación permite que todo el material en el crisol entre en combustión con incremento de la

flama, dando una tonalidad más clara al producto resultante, sin embargo el difractograma de la muestra YAP Cr 1 GU STT presenta nuevamente material amorfo como se ve en el difractograma figura 13.

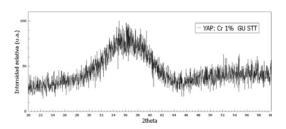


FIGURA 13. Difractograma de muestra YAP: 1% Cr (x=0.01) sin tratamiento térmico

Posteriormente se realizan tratamientos térmicos de 1000° C y 1100°C, obteniéndose las muestras YAP Cr 1 GU CTT 1000 y YAP Cr 1 GU CTT 1100, observándose definición de estructuras cristalinas en el material sintetizado con aparición de la fase YAP ver figura 14.

En el caso de la muestra YAP Cr 1 GU CTT 1100 que recibe un tratamiento térmico de 1100°C, se observa una menor cantidad de picos y que los picos cercanos tienden a unirse formando un solo pico, sin embargo existe una gran cantidad de picos adicionales de otras fases.

FIGURA 14. Difractograma de muestra dopada 1% y con tratamiento térmico de 1000°C y 1100°C por 3 horas

Este resultado confirma que existe dificultad para sintetizar de modo económico YAP dopado con Cr³⁺ policristalino usando únicamente una mezcla de glicina y urea como combustibles.

Tanto Premkumar y Col. [8] como Blosi y Col. [7] mencionan este hecho a diferencia del método convencional caro [9], como lo indican Sugiyama y Col. [10], posteriores estudios deben ser realizados.

CONCLUSIONES

Fue obtenida fase YAlO₃ policristalina pura por el método de combustión en solucion, usando mezcla de urea y glicina como combusibles.

Dopajes del YAlO₃ dopado para x=0.01, 0.001 con el ion Cr³⁺ provocan la aparición de mas fases. Relaciones de G/U mayores a 2 podrían producir mejores resultados junto con adecuada aplicación de tratamientos térmicos después.

AGRADECIMIENTOS

Este trabajo fue posible gracias al apoyo económico del Instituto de Investigación de la Facultad de Ingeniería Geológica, Minera y Metalúrgica FIGMM (UNI).

A la Facultad de Ciencias FC (UNI) donde se realizaron la síntesis del material y el refinamiento Rietveld.

Al laboratorio de difracción de rayos X de la Facultad de Ciencias Físicas de la Universidad Nacional Mayor de San Marcos UNMSM

Al gerente Dr. J. A. Yparraguirre de la compañía "Ingenieros FA S.A.C" donde se realizaron análisis DRX

Al Dr. Alcides López del Instituto de energía Nuclear donde se tomaron las imágenes de microscopia electrónica de Barrido MEB.

REFERENCIAS

- [1] Liu. Z.; Ma. J.; Sun..CeramInt. 2010. 36. 2003-2006.
- [2] Huamán, A. REVCINUI, 2015, Spectrochimacta A. 2012.96.154-162.
- [3] Fumo. D.A.; Jurado. J.R.; Segadães. A. M. Mater. Res. Bull.1996. 31. 10. 1243-1255.
- [4] Fumo. D.A.; Jurado. J.R.; Segadães. A.M.; Frade.J.R..Mater. Res. Bull.1997. 32. 10. 1459-1470.
- [5] Lazo, A., Tesis Doctoral, Universidade Federal de Goiás, 2014.
- [6] Iano. R.; Lazau. R.J. Mater. Sci.2015. 50.6382-6387
- 7] Blosi. M.; Albonetti. S.; Dondi. M. J. Sol-Gel Sci. Techn. 2009.50:449-455.
- [8] Premkumar.H.B.;Sunita. D.V.; Spectrochimacta A. 2012.96.154-162.
- [9] Cruciani, G.; Ardit, M., J. Phys. Chem. A, 2009, 113, 13772-
- [10] Sugiyata. M.; Yanagida. T.; J Cryst Growth.2013. 362. 157-161.