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e-mail: sergio.camiz@uniroma1.it;
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Aiming at studying the “El Niño” phenomenon on the basis of the available data, we started an exploratory
analysis of the set of surface temperature time-series produced from the USA’s National Oceanic and Atmospheric
Administration (NOAA). The first results of Principal Component Analysis and Hierarchical Factor Classification
applied on the data set relative to the period 1991-2008 are reported. Together with the regular seasonal fluctuation
and the subdivision in 11 classes of the time-series, all spacially connected but two, the occurrence of El Niño in
2007 results from the data as a very strong perturbation of an otherwise very regular pattern.
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Con el objetivo de estudiar el Fenómeno del Niño a partir de bases de datos disponibles, nosotros comenzamos
un análisis exploratorio de la temperatura superficial de un conjunto de series de tiempo obtenidas de la Adminis-
tración Nacional Oceánica y Atmosférica (NOAA) de EEUU. Los primeros resultados del Análisis de Componentes
Principales y de la clasificación jerárquica de factores aplicada sobre el conjunto de datos relativos al peŕıodo
1991-2008 son reportados. Conjuntamente con la fluctuación regular estacional y la subdivisión en 11 clases de las
series temporales, todas conectadas espacialmente, la ocurrencia de El Niño en 2007 resulta de los datos como una
perturbación muy fuerte dentro de un patrón muy regular.
Palabras Claves: La Oscilación del Paćıfico Sur El niño/La niña, Series de Tiempo, Análisis de Componentes

Principales, Clasificación Jerarquica de Factores, Clasificación de Variables.

1. Introduction

“El Niño” and “La Niña” are part of the climate cy-
cle referred to as the El Niño Southern Oscillation (EN-
SO). During El Niño, warmer than average sea surface
temperatures occur in the Equatorial central and east-
ern Pacific while during La Niña, cooler than average sea
surface temperatures predominate. The Southern Oscil-
lation (“SO” in ENSO) represents the atmospheric com-
ponent of the cycle in which lower (higher) than normal
sea-level pressure occurs near Tahiti and (higher) low-
er sea-level pressure occurs in Australia during El Niño
(La Niña) conditions. ENSO is an important component
of the climate system since the El Niño/La Niña phases
impact the weather on a global scale.

The impact of ENSO sea surface temperatures
(SST s) on the atmosphere is through the tropical re-
sponse of rain-producing convection and cloud formation,
the principal agents for exchanging heat from Earth’s
surface. Normally, the SST is very warm in an area that
covers the Equatorial Indian and West Pacific Ocean re-
gions.

During El Niño, among its consequences are the in-
creased rainfall across most of the Americas’ Western

belt, ranging from South USA through North of Chile,
which has caused destructive floodings, and drought in
the West Pacific, sometimes associated with devastating
brush fires in Australia. Observations of conditions in the
Tropical Pacific are considered essential for the prediction
of short term (a few months to 1 year) climate variations.
The opposite occurs during La Niña, with rainfall deficits
in the Eastern Equatorial Pacific and the wet conditions
confined to the Western Equatorial Pacific.

Our interest is the analysis of the impact of El Niño
in Peru and for this task we started collecting the neces-
sary data and analyzing them through exploratory data
analysis techniques. In this paper we introduce the data,
the exploratory methods used so far, and the first results
that we obtained from the first analyses performed.

2. The data

The first data base that we found through Internet
of some interest for our purpose is the one provided by
the United States’ National Oceanic and Atmospheric
Administration (NOAA). NOAA operates an array of 88
buoys almost regularly placed on a regular grid of 8 x 11
nodes in the Equator belt of Pacific Ocean. The buoys
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measure temperature, currents and winds in the equato-
rial band and transmit daily the data which are collected,
checked for quality, adjusted when necessary, and made
available to researchers and forecasters around the world.
The distribution of buoys is shown in Figure 1.

For our work, we limited our attention to the Ocean’s
surface temperature that we downloaded from NOAA’s
web site (www.pmel.noaa.gov/tao). They were 88 time
series of daily surface temperature taken from March 1st,
1980 through December 31st, 2008. Of these, 20 series
were empty and we withdrew them. The other 68 time-
series are all nearly continuous since 1991, whereas only
27 had data in the previous period. Thus, we decided,
as a preliminary task, to limit the study on the 68 time-
series and on the period 1991-2008, for a total of 6575
daily observations. To this data base we added, as nomi-
nal characters to use as supplemental elements, the year
and the month of sampling, together with a combina-
tion of year and season, to follow in a medium detail the
overall evolution of the temperatures.

Figure 1. The geographical position of the
TAO/TRITON array of buoys implemented by the
NOAA.

In the following Table, the univariate statistics of all
68 time-series are reported. We submitted this data ta-
ble to multidimensional data analysis techniques, namely
Principal Components Analysis and Hierarchical Factor
Classification, two techniques that may well be interlaced
among them, in order to have a first picture of the Pacific
Ocean surface temperature pattern.

2.1. Principal Component Analysis

Principal Component Analysis (PCA, Langrand and
Pinzón, 2009; Benzécri et al., 1982; Jolliffe, 1986; Legen-
dre and Legendre, 1998) is a classical exploratory analysis
tool, that aims at synthesizing a quantitative (ratio-scale)
data table by searching a reduced dimensional represen-
tation that summarizes most of the data variation, in the
sense of the points inertia around the centroid-origin. In
this way, both continuous characters and units may be
represented on graphics in which their position reflects
respectively the factors’ values for the units and the cor-
relation with the factors for the characters.

Table 1. Univariate statistics of the 68 time-series of
temperatures used for our study: Name, Number of non-
missing values, mean, standard deviation, minimum, and
maximun.

Site Freq Mean St.Dev. MIN MAX

9N140W 6551 27,44 0,87 24,41 29,38
8N137E 2651 29,13 0,62 26,75 30,81
8N156E 4355 29,07 0,54 27,36 30,64
8N156E 4355 29,07 0,54 27,36 30,64
8N165E 6279 28,84 0,59 26,61 30,77
8N180E 4828 28,57 0,64 26,57 30,48
8N170W 5797 28,39 0,67 26,57 30,19
8N155W 5495 27,97 0,76 25,46 29,83
8N125W 5221 27,69 0,63 25,25 29,39
8N110W 5785 27,91 0,75 25,48 30,08
8N095W 4901 27,75 1,04 24,51 30,97
5N137E 3067 29,28 0,59 27,12 30,81
5N147E 5775 29,37 0,49 27,54 30,82
5N156E 5277 29,38 0,47 26,15 30,82
5N165E 6400 29,21 0,54 27,38 30,76
5N180E 5297 28,90 0,67 25,93 30,89
5N170W 5588 28,67 0,76 25,38 30,46
5N155W 6056 28,08 0,86 24,41 30,16
5N140W 6266 27,54 0,94 23,67 29,85
5N125W 5763 27,30 1,00 22,98 29,88
5N110W 5897 27,41 0,98 22,90 29,93
5N095W 5043 27,62 0,90 24,75 30,55
2N137E 5261 29,49 0,56 27,18 30,80
2N147E 3958 29,69 0,41 28,27 31,01
2N156E 5741 29,50 0,52 27,30 30,95
2N165E 6360 29,35 0,67 27,01 31,03
2N180E 5530 28,73 0,99 25,28 30,88
2N170W 5149 28,17 1,13 24,64 31,16
2N155W 5586 27,59 1,12 23,09 30,34
2N140W 6110 26,77 1,32 20,45 30,11
2N125W 5378 26,20 1,49 20,74 29,44
2N110W 6150 26,05 1,68 19,84 30,49
2N095W 4281 26,48 1,49 20,85 30,94
0N137E 948 29,64 0,42 28,36 30,92
0N147E 4911 29,70 0,45 27,63 31,17
0N156E 5507 29,55 0,57 27,25 30,95
0N165E 5469 29,36 0,77 26,23 30,99
0N180E 5363 28,49 1,14 25,12 30,76
0N170W 6460 27,98 1,23 24,09 30,97
0N155W 6324 26,96 1,35 22,56 30,60
0N140W 6051 25,99 1,52 20,57 30,07
0N125W 5692 24,87 1,76 19,84 29,90
0N110W 6061 24,22 2,15 17,51 30,09
0N095W 4717 23,88 2,53 18,16 30,88
2S156E 5841 29,64 0,53 27,11 31,29
2S165E 6076 29,60 0,65 26,58 31,22
2S180E 5750 28,96 0,95 25,27 31,15
2S170W 5758 28,52 1,00 24,85 31,14
2S155W 5513 27,54 1,16 23,45 30,39
2S140W 6186 26,64 1,43 21,13 30,41
2S125W 6235 25,64 1,59 20,92 30,20
2S110W 5905 24,62 2,04 19,35 30,15
2S095W 4930 23,93 2,66 17,43 30,33
5S156E 5828 29,66 0,57 27,06 31,28
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Through PCA the factors, that are linear combina-
tions of the original characters, may be interpreted on
the basis of the characters whose coefficients are higher
and of those most correlated with them. As for the units,
their position in the factor space reflects their score in the
ordination given by each factor, a kind of compromise be-
tween the scoring of the characters that contribute or are
correlated with them.

3. The methodology

The PCA’s rationale is based on the Singular Val-
ue Decomposition (SVD , Greenacre, 1984) of the da-
ta table and its strict relation with the eigendecompo-
sition of the correlation matrix between the data table
columns. We start with an n × p data matrix X, whose
n rows xi, i = 1, . . . , n represent the values taken by
all characters in each of the units and whose p columns
Xj , j = 1, . . . , p represent the values taken by each of the
characters on all units. The matrix is first transformed by
standardizing the columns, that is by centering them to
the respective mean and dividing them by their respec-

tive standard deviation, in symbols xij → zij =
xij−X̄j

σj

so that each column’s mean and variance become 0 and 1
respectively. Then, through SVD the so built matrix Z is
decomposed as Z = UΛ

1
2V ′, where U and V are the sym-

metric orthogonal matrices of the eigenvectors of 1
nZ
′Z

and 1
nZZ

′ respectively, with UU ′ = In and V V ′ = Ip,
and Λ the diagonal matrix of the corresponding eigenval-
ues of both, all non-negative, sorted in decreasing order.

Thanks to the decomposition, the units’ coordinates
on each factor result as the columns of UΛ

1
2 , whose vari-

ance equals the corresponding eigenvalue λ and the co-
ordinates of the characters as the columns of V . As they
are orthogonal, the coordinates of the units on the fac-
tors are uncorrelated among them, and it results that
the amount of inertia along each factor equals the corre-
sponding eigenvalue. Thus, its importance may be mea-
sured by its share to the total table inertia, given by the
ratio of the eigenvalue to trace (Λ) = p. The Eckart and
Young (1936) theorem ensures that the best reduced rank
reconstruction of the data matrix, in the least-squares
sense, is obtained by limiting the data table reconstruc-
tion to the first larger eigenelements. It must be remind-
ed that, in decreasing order, the coordinates of the units
along each factor are the best approximation of the val-
ues of the original characters and that the cosines of the
angles among the characters are the best approximation
of their correlation in the reduced dimensional spaces.

For the interpretation of the PCA results, the contri-
bution given by each character to the linear combination
that defines each eigenvector and the correlation between
characters and factors are the most important issues.
Then, the eigenvalues and their percentage of explained
inertia are useful to identify the amount of total informa-
tion interpreted. This information is currently taken into
account to decide the most suitable reduced dimension
for the interpretation. Indeed, this is still an issue debat-
ed in literature (see Jackson, 1993 and Peres-Neto et al.,
2005, for reviews) and we did not take a decision in this

sense: in this paper we shall evoke the first four dimen-
sions, interpreting only the first two, just as a provisional
examination, with no claim to be exhaustive.

Indeed, on the factor spaces other characters, both
continuous and nominal, and other units may be project-
ed as supplemental elements, based on their behaviour in
respect to the active elements: the continuous characters
are projected on the circle of correlations according to
their correlation with the axes; each level of the nominal
ones is represented at the centroid of the units that take
that level as observed value. As the supplemental char-
acters do not participate to the eigenvectors construc-
tion, they are useful as external references in the factors
interpretation. We shall take advantage of this feature
to include in the graphical representation both the time
nominal characters and the HFC representative variables
of the classes, in order to synthesize the results and ease
its interpretation.

3.1. Hierarchical Factor Classification

Hierarchical Factor Classification of continuous char-
acters (HFC , Denimal, 2001; Camiz et al., 2006; Camiz
and Pillar, 2007) is a new method that aims at combin-
ing the classification of characters, a task neither very
developped nor very used in literature, with the factorial
methods in the same exploratory spirit of PCA; it is easy
to use, and its results are immediately understandable by
a non-particularly specialized user. Originally introduced
by Denimal (2001), it combines classification and ordina-
tion in a single procedure, so that it outputs at the same
time a hierarchy and a set of principal planes associated
to the hierarchy’s nodes. The association among charac-
ters is based on their reciprocal covariance and, for each
node, the method provides a principal plane where both
characters and units can be represented. This is certainly
an advantage for the user accustomed to PCA and subse-
quent hierarchical clustering, in that the interpretation of
the groups of characters and of the principal components
becomes easy, and the units can as well be classified at
each step according to the found differences among the
characters. Since the method is based on the same geo-
metric space as PCA, the resulting principal components
can be represented as supplemental elements in the PCA
principal planes. This allows an interoperability between
the two methods.

In HFC one deals with the same set of p quantita-
tive (ratio-scale) standardized characters Z. The method
operates as follows:

1. at the beginning each character is considered a rep-
resentative variable of the singleton group com-
posed by itself. Then the recursive algorithm is
based on the following steps:

2. all pairs of existing groups are compared, through
their representative variable: each pair of represen-
tative variables is submitted to a non-normalized
PCA, i.e. the PCA of their 2 × 2 covariance ma-
trix. It must be pointed out that in the case of
standardized characters this equals the correlation
matrix. As a consequence, if the comparison is done
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between two original characters an ordinary PCA
results, whereas for all other comparisons the re-
sults will be different: in particular, the trace of
the matrix will be larger than 2.

3. Among the pairs of representative variables, the
pair is selected whose PCA second eigenvalue is
minimum. Due to the unpredictable value of the
trace of the covariance matrix this is not the same
as searching for the highest value of the first one.

4. The two groups of characters corresponding to the
selected pair of representative variables are merged
in a group, that becomes a new node of the hierar-
chy.

5. The first principal component of the PCA corre-
sponding to this node, i.e. the set of coordinates
of units on the first principal axis, is chosen as its
representative variable.

6. The first eigenvalue equals the variance of the rep-
resentative variable, thus summarizes the amount
of the original characters’ variance that it summa-
rizes.

7. The second principal component coefficients mea-
sure the distance between each variable in the node
and the representative variable. We may call it node
variable, in the sense that it shows the divergence of
the two groups that are gathered in the considered
node.

8. The second eigenvalue of this PCA is chosen as the
hierarchy index of this node.

The steps (2)...(6) are repeated p− 1 times, obtaining a
complete hierarchical classification of the characters.

The idea underlying the method is that the represen-
tative variable of a group plays the role of central ten-
dency of the whole set, similar to the first principal com-
ponent in a PCA and the centroid of a group of units.
Thus, by non-standardizing the PCA, the weight of the
groups is in some way given to its representative variable.
This is like attributing to the centroid the weight of each
group of units in the Ward’s (1963) clustering method.

In a scatter diagram of the two representative vari-
ables, whose groups joined in a given node, the interpre-
tation of both factors at each step is straightforward: the
position of the first factor is within the smallest angle
between the two straight lines spanned by the represen-
tative variables, since the highest scalar product corre-
sponds to the smallest angle. That is, the first factor sum-
marizes what the representative variables have in com-
mon and therefore what have in common also all char-
acters gathered in the node. Instead, the second factor
represents what the characters do not have in common,
which is minimized at each step. It is then natural to con-
sider the first factor as the variable representative of the
new node. Since the PCA is not standardized, the first
eigenvalue is the difference between the sum of the two
variances of the two representative variables minus the
second eigenvalue, so that it can take any positive value.

Once the process ends a series of coefficients
w1, . . . , wp results that can be used to build all the
representative variables. Let Zj = (Zij), i = 1, . . . , n
the column of Z corresponding to the j-th character.
For the k-th node the representative variable is y1,k =∑
j∈k

(
wk√
mk
zj

)
with mk =

∑
w2
k, where the sums are ex-

tended to the characters that compose the k-th node. The
first consequence is that all representative variables are
linear combinations of the original ones belonging to the
node so that they lie on the same space spanned by the
original characters. This allows the projection of the rep-
resentative variables on the principal spaces of an ordi-
nary PCA. Furthermore, for the characters j = 1, . . . , p,
let tj =

zj
mj

, and for the representative variables for the

nodes k = p + 1, . . . , 2p − 1 let tk =
∑
j∈k

mj

mk
tj . Then

for each node k = (k1, k2) joining the two nodes k1 and
k2, it can be shown that the second eigenvalue takes the
form νk = mk1mk2

mk1+mk2
‖tk1 − tk2‖2. This formula is akin to

a within-group variance as in the Ward (1963) clustering
criterion, so that we can attribute to the sequence the
same properties, in particular that nk is non-decreasing
along the clustering process. Unfortunately the mjs are
unknown at the beginning of the process (that would
tremendously speed up the computation) but only at the
end.

The new feature of this clustering method, an advan-
tage in comparison to the others, consists in the principal
planes associated to the nodes of the hierarchy, where
both characters and units can be represented, as in a
common PCA. Indeed, in this case, only the characters
belonging to the newly formed group are represented.

All representative variables are linear combinations
of the original ones (with zero coefficients of the char-
acters not belonging to the represented group), so that
they lay in the same vector space. In particular, all sec-
ond eigenvectors are orthogonal to each other and to the
first eigenvector of the last node. As a consequence, the
total inertia of the data table is decomposed according
to the sequence of fusion levels plus the first eigenvalue
of the last PCA. Indeed, the first principal component of
the last PCA summarizes the similarity of all characters,
whereas the dissimilarity is decomposed orthogonally in-
to the p− 1 second principal components of the previous
PCAs. These properties would not hold if at each step
the representative variables were standardized.

On a principal plane a group of characters may as-
sume the form of a dipole, since the sign of the covariance
between the concerned characters has no influence on the
principal components, thus on the aggregation process.
Therefore, the characters of a node may form a dipole
of two groups opposed to each other in the direction of
the representative variable of the node, according to the
sign of their pair-wise correlation. This is not a drawback
of the method, but rather a correct idea of aggregation,
since the sign of the correlation depends on how each
character is measured and not on its relation with the
others.

The method has been recently improved, in order to
fit an optimization criterion. Indeed, Denimal (2007) pro-
posed to decompose the hierarchical factorial analysis in
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two main stages: the first one aims at building an ini-
tial hierarchical clustering of variables which is, in a sec-
ond step, improved through an optimization process. The
latter can be interpreted as a k-means type procedure
(MacQueen, 1967) defining a convergent series of hierar-
chies and aims at improving the quality of both clusters
and their reprÃ c©sentative variables. In this optimiza-
tion process, the level of the node defining each cluster is
also taken into account by allocating increasing weights
to the nodes of the hierarchy according to their levels.
From this point of view, the optimization process aims
at defining a new hierarchy whose significant splittings
appear as clearly as possible and are concentrated in a
number of upper nodes as small as possible. As a con-
sequence, the two subclusters defined by each of these
upper nodes of the optimized hierarchy are as separated
as possible and the elements of each of them built up as
closely as possible. As a result of this process, the found
partition is optimized, together with the upper part of
the hierarchy.

Table 2. The first ten eigenvalues of the PCA of the
time-series of surface temperature at the buoys array.

N Eigenvalue Percentage Cumulate

1 21,4221 31,50 31,50

2 15,1891 22,34 53,84

3 5,8129 08,55 62,39

4 3,6281 05,34 67,72

5 1,7463 02,57 70,29

6 1,5327 02,25 72,55

7 1,2760 01,88 74,42

8 0,9970 01,47 75,89

9 0,9380 01,38 77,27

10 0,7945 01,17 78,44

In order to have a partition of the characters into
classes, the composed hierarchy may be cut as usual and
one may take as reference the several methods proposed
in literature (see Milligan and Cooper, 1985, for a re-
view). Indeed, since the second eigenvalue would rep-
resent a share of the original characters’ variance, the
choice to cut at a level less than one would ensure that
no group would be bi-dimensional, that is formed by un-
correlated characters: a choice that we share with Sarle
(1983). Indeed, in this work we decided on the basis of
a cross-validation, in practice an a posteriori check of
the goodness of reconstruction of the original characters
by the hierarchy’s part upper the partition. For this task,
the set of the node variables, sorted starting from the top
node, is taken into account. For each original character,
a forward multiple regression is performed, starting with
the representative variable of the first node and including
in sequence the node variables upper to the class to which
the character belongs. As each regression procedure stops
when no explanatory character improves significantly the
regression, among the many possible stopping rules, we
decided here to partition the hiererchy at a level such that

all its upper nodes’ node variable played a significant role
for at least one character.

4. Numerical results

The data table of 68 buoys 6575 daily measures of
surface temperature was submitted first to PCA adding
the months, the years, and the combination of season
and years as supplemental characters: 12-, 18-, and 72-
nominal level characters respectively. In this way a bet-
ter understanding of the pattern of the data could be
obtained, as it will be shown later.

The examination of the sequence of the first ten eigen-
values of PCA reported in Table 2 shows that after the
first two of high relevance, two minor follow and then oth-
er five all worth around one, whose value suggests that
some attention might be deserved to their corresponding
eigenvectors. For the moment, we concentrate on the first
two, that summarize nearly 54 % of the total inertia, but
later the following two might be taken into account, as
they may to be tied to some groups or months or of sites.
In this case, the explained inertia would raise to 68 %.

Figure 2. PCA: Circle of correlations of the tempera-
tures’ time-series on the plane spanned by the principal
axes 1 and 2.

Indeed, looking at Figure 2, in which the sites time-
series are set according to their correlation with the first
two factors of PCA, it may be seen that most sites se-
ries are rather well represented, with a continuous pat-
tern, that indicates a chain of correlation among them.
The interpretation is straightforward, since the arrows
point in direction of the warmer days, so that the fourth
quadrant represents the warmer periods and the second
the cooler ones. Apart from that first remark, the read-
ing of the figure is neither easy nor interpretable, but
in the following we shall take advantage of the classi-
fication of characters to reduce the amount of displayed
items and attempt an interpretation concerning the sites.
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Figure 3. PCA: The pattern of the daily measures of all
buoys on the plane spanned by the principal axes 1 and 2
of the PCA of the time series.

On Figure 3 the pattern of daily measures may
be observed. It is evident that nothing can be said
easily concerning the daily variation, due to the too
large number of units involved. To understand this
pattern, we shall use the projection on the plane of
the months, the years, and the combination season-
year, that will allow us to draw the trajectories
corresponding to the time sequence of these items.

Figure 4. PCA: The pattern of the months on the plane
spanned by the principal axes 1 and 2 of the PCA of the
time series.

In Figure 4 the pattern of the months is represented.
Looking at it the meaning of the factor plane becomes ev-
ident, since the yearly seasonal variation is regularly rep-
resented. Indeed, a regular circular pattern of the month
results, with the year’s first season period roughly cor-
responding to the second quadrant and partially to the
first, the second season to the first and partially the sec-
ond quadrant, with the other two seasons concentrated
in the fourth. This circularity suggests to understand the

position of the individual series in the sense that the sites
should reach their maxima of temperature in the years’
period whose position is in agreement with their direc-
tion and the minima in the opposite one. Despite the
array is situated regularly around the Equator belt, no
true opposition appears among the buoys situated in the
opposite hemisphere. Rather, one may state that no cor-
relation should exist between the series situated around
the two factors. Indeed, a small group of poorly repre-
sented series appears near the negative site of the first
axis: their position on the following axes deserves being
explored, together with the seasonal pattern, to check if
some specific behaviour of these sites may be detected.

Figure 5. PCA: The pattern of the years on the plane
spanned by the principal axes 1 and 2 of the PCA of the
time series.

In Figure 5 the trajectory of the years is reported on
the same plane. In this case, a rather limited fluctuation
is visible in the years 1991-1994, that are concentrated
in the fourth quadrant. Then in 1995-1996 an evident
displacement in direction of the second quadrant is fol-
lowed by a dramatic shift along the first axis, so that
1997 (when the last registered El Niño event occurred)
is set in a position corresponding to maximum heath.
Then, the following two years result progressively more
cold, to return two years later to the previous average
situation, so that the years 2002-2006 are again in the
fourth quadrant. Indeed, the last two years show a pat-
tern reversed in respect to the El Niño previous one, with
a shift towards the maximum cold.

In Figure 6 the time pattern is given more complex by
combining the year and the season. Thus is may be seen
that the El Niño maximum that occurs in winter 1997 is
preceded by a change in the circular fluctuation that may
be noticed in winter 1996, in which the tendence is invert-
ed towards colder temperatures than usual, so that the
increase until winter 1997 is horizontal along the first ax-
is. After winter 1997 the regular pattern is reestablished,
but at colder levels, until winter 2000, after which a sta-
bility period reappears with the same temperature levels
as before 1996, until a new pattern change, this time in
direction of the cold, reappears starting in autumn 2007.
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Figure 6. PCA: The seasons pattern from 1991 to 2008
on the plane spanned by the principal axes 1 and 2 of the
PCA of the time series.

On this basis, we are now able to understand the
meaning of the “finger” that appears on the represen-
tation of the daily measures: it should be the period of
maximum effects of El Niño.

We study now the results of HFC applied to our
data table. Indeed, due to the large number of units
and of missing values, we could not take advantage of
the offered possibility, to represent the units on factor
spaces and to partition them according to their rela-
tive position. Nevertheless, we could obtain the classes
and the representative variables, that we further pro-
jected as supplemental on the first factor plane of PCA.

Figure 7. HFC: The dendrogram representing the upper
part of the hierarchy, with the 10 nodes dominating the
11 classes partition.

The inspection of the hierarchy structure obtained
after optimization gives eleven groups as the partition
of higher interest. The upper part of the dendrogram is
shown on Figure 7: here, it may be seen that the eleven
groups gather to form an important partition in three
classes, with two of them relatively more similar than
the other.

The partition is represented in Figure 8, in which
the time-series are represented in a schematic way ac-
cording to their geographical position. Here the differ-
ent colours represent the different groups, as identified
in the bottom row by the number of the corresponding
node of the hierarchy. On each series the mean temper-
ature along the whole period is reported. It is interest-
ing to observe that, apart from the two classes 120 and
123, all others result spacially connected, an important
sign of continuity, that may concern the two said class-
es too, considering that one is on the border of the ar-
ray and within the other a missing buoy results, so that
even these may be somehow connected in the reality.

Figure 8. HFC: The composition of the classes on a
schematic reproduction of the buoys geographical position.
The number of class is given in the coloured legenda be-
low. In each cell, the average temperature of the corre-
sponding time-series is reported.

Looking at the table, one may notice that in the East-
ern site of the Pacific a larger homogeneity results, as it
may be reflected by the size of the two classes 121 and
125 that summarize 25 out of 68 time-series, more than
one third of the total. With class 111 they identify the
coldest site of the Pacific Ocean and constitute a group
of a higher partition into three classes of the dendro-
gram. The other classes are much smaller: the classes on
the Easter site 122, 123, and 124 are situated North and
North-East of Indonesia and are the warmest. Their be-
haviour seems alternative to the others, so that the big
class they form seems tied to the previous one mainly
in the dipole sense, that is based on their negative cor-
relation. The other classes are situated in the Central
Pacific in an intermediate position, with temperatures
in-between the others, thus reflecting an independence
from them. This could explain the fact that they gather
with the other dipole at the very last level. On the oppo-
site, it is not easy to understand the differences among
the series in the Central and in the Western Pacific, since
this may depend on variations that may not be so easily
visible.
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5. Final remarks

At a very first sight, the El Niño fluctuation results
very well depicted by the first few graphics that we
showed here and it appears as a very important varia-
tion in the otherwise stable fluctuation of the tempera-
ture’s regime in Pacific Ocean’s Equatorial belt. From the
graphics it results that the corresponding raise in temper-
ature is preceeded, around a year earlier, by a decrease.
This appears in the only complete El Niño fluctuation
that was registered by the collected data, namely the
1996-2000 one, but maybe a new El Niño cycle started
in autumn 2007, this time apparently with an important
lowering until end 2008, the end of the downloaded data.

Figure 9. The variables representative of the 11 classes
obtained from the HFC projected as supplemental on the
circle of correlations on the factor plane spanned by the
first two factors of PCA.

Unlike PCA, in the first results of HFC we are not
able to detect the El Niño fluctuation, since we could not
take full advantage of the units representation. Never-
theless, the results gave us interesting information con-
cerning the relative homogeneity of the classes and the
relative difference among them. Indeed, the higher frag-
mentation of the Central and Western Pacific, in respect
to the Eastern side, maybe could be interpreted either
on a morphological basis, such as the larger presence of
islands, or on the presence of different streams. From the
analyses other interesting results derive, in particular the
different behaviour detected in the different groups of

buoys along time, that results from their different posi-
tion on the first factor plane, as well as the special situ-
ation of two groups of buoys, whose main variations are
along the third and fourth factors respectively.

From the unified representation given by projecting
the representative variables on the factor planes (shown
in Figure 9) we may observe the three classes of time-
series of the Eastern Pacific on the right side of the first
axis, the five of the Central Pacific around the lower part
of the second axis, and the third group of three situated
in the Western Pacific, poorly represented on this factor
plane, in the third quadrant. Reminding the Figure 4 we
may say that the maximum temperature occurs for the
first class in se second fourth of the year, for the second
in the third and for the third in the fourth, so that the
first years period appears as the coldes all the monitored
area round. The El Niño anomaly, that was increasing
progressively until the end of 1997, appears then very
well, with an indication that it interests in particular the
most Eastern site of the Ocean, close to the American
coasts.

Indeed, a deeper comprehension of the Pacific Ocean
temperature pattern could derive by studying the cor-
relation among series at some time-interval lag. Maybe
this could explain the difference among the small classes
obtained.

It must be observed the contrast between the regu-
lar pattern of the seasonal variation during the normal
years and the important deviation due to El Niño ef-
fects in the studied period: with more historical data one
may evaluate the different deviation during the various
manifestation of the fluctuation and try to derive any sis-
tematic pattern. This could be the subject of a further
investigation.
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